Nottingham Trent University
Recent technological advances in synthetic data have enabled the generation of images with such high quality that human beings cannot tell the difference between real-life photographs and Artificial Intelligence (AI) generated images. Given the critical necessity of data reliability and authentication, this article proposes to enhance our ability to recognise AI-generated images through computer vision. Initially, a synthetic dataset is generated that mirrors the ten classes of the already available CIFAR-10 dataset with latent diffusion which provides a contrasting set of images for comparison to real photographs. The model is capable of generating complex visual attributes, such as photorealistic reflections in water. The two sets of data present as a binary classification problem with regard to whether the photograph is real or generated by AI. This study then proposes the use of a Convolutional Neural Network (CNN) to classify the images into two categories; Real or Fake. Following hyperparameter tuning and the training of 36 individual network topologies, the optimal approach could correctly classify the images with 92.98% accuracy. Finally, this study implements explainable AI via Gradient Class Activation Mapping to explore which features within the images are useful for classification. Interpretation reveals interesting concepts within the image, in particular, noting that the actual entity itself does not hold useful information for classification; instead, the model focuses on small visual imperfections in the background of the images. The complete dataset engineered for this study, referred to as the CIFAKE dataset, is made publicly available to the research community for future work.
1
The paper explores how Large Language Model (LLM)-empowered Autonomous Agents (LAAs) synthesize connectionist and symbolic AI paradigms. It presents LAAs as a new wave of neuro-symbolic integration that provides enhanced scalability and human-like reasoning compared to earlier hybrid approaches like Knowledge Graphs, proposing future research directions for these agents.
There are growing implications surrounding generative AI in the speech domain that enable voice cloning and real-time voice conversion from one individual to another. This technology poses a significant ethical threat and could lead to breaches of privacy and misrepresentation, thus there is an urgent need for real-time detection of AI-generated speech for DeepFake Voice Conversion. To address the above emerging issues, the DEEP-VOICE dataset is generated in this study, comprised of real human speech from eight well-known figures and their speech converted to one another using Retrieval-based Voice Conversion. Presenting as a binary classification problem of whether the speech is real or AI-generated, statistical analysis of temporal audio features through t-testing reveals that there are significantly different distributions. Hyperparameter optimisation is implemented for machine learning models to identify the source of speech. Following the training of 208 individual machine learning models over 10-fold cross validation, it is found that the Extreme Gradient Boosting model can achieve an average classification accuracy of 99.3% and can classify speech in real-time, at around 0.004 milliseconds given one second of speech. All data generated for this study is released publicly for future research on AI speech detection.
1
Recently, the quality of artworks generated using Artificial Intelligence (AI) has increased significantly, resulting in growing difficulties in detecting synthetic artworks. However, limited studies have been conducted on identifying the authenticity of synthetic artworks and their source. This paper introduces AI-ArtBench, a dataset featuring 185,015 artistic images across 10 art styles. It includes 125,015 AI-generated images and 60,000 pieces of human-created artwork. This paper also outlines a method to accurately detect AI-generated images and trace them to their source model. This work proposes a novel Convolutional Neural Network model based on the ConvNeXt model called AttentionConvNeXt. AttentionConvNeXt was implemented and trained to differentiate between the source of the artwork and its style with an F1-Score of 0.869. The accuracy of attribution to the generative model reaches 0.999. To combine the scientific contributions arising from this study, a web-based application named ArtBrain was developed to enable both technical and non-technical users to interact with the model. Finally, this study presents the results of an Artistic Turing Test conducted with 50 participants. The findings reveal that humans could identify AI-generated images with an accuracy of approximately 58%, while the model itself achieved a significantly higher accuracy of around 99%.
Deploying emotion recognition systems in real-world environments where devices must be small, low-power, and private remains a significant challenge. This is especially relevant for applications such as tension monitoring, conflict de-escalation, and responsive wearables, where cloud-based solutions are impractical. Multimodal emotion recognition has advanced through deep learning, but most systems remain unsuitable for deployment on ultra-constrained edge devices. Prior work typically relies on powerful hardware, lacks real-time performance, or uses unimodal input. This paper addresses that gap by presenting a hardware-aware emotion recognition system that combines acoustic and linguistic features using a late-fusion architecture optimised for Edge TPU. The design integrates a quantised transformer-based acoustic model with frozen keyword embeddings from a DSResNet-SE network, enabling real-time inference within a 1.8MB memory budget and 21-23ms latency. The pipeline ensures spectrogram alignment between training and deployment using MicroFrontend and MLTK. Evaluation on re-recorded, segmented IEMOCAP samples captured through the Coral Dev Board Micro microphone shows a 6.3% macro F1 improvement over unimodal baselines. This work demonstrates that accurate, real-time multimodal emotion inference is achievable on microcontroller-class edge platforms through task-specific fusion and hardware-guided model design.
The rapidly changing architecture and functionality of electrical networks and the increasing penetration of renewable and distributed energy resources have resulted in various technological and managerial challenges. These have rendered traditional centralized energy-market paradigms insufficient due to their inability to support the dynamic and evolving nature of the network. This survey explores how multi-agent reinforcement learning (MARL) can support the decentralization and decarbonization of energy networks and mitigate the associated challenges. This is achieved by specifying key computational challenges in managing energy networks, reviewing recent research progress on addressing them, and highlighting open challenges that may be addressed using MARL.
The recent growth of Artificial Intelligence (AI), particularly large language models, requires energy-demanding high-performance computing (HPC) data centers, which poses a significant burden on power system capacity. Scheduling data center computing jobs to manage power demand can alleviate network stress with minimal infrastructure investment and contribute to fast time-scale power system balancing. This study, for the first time, comprehensively analyzes the capability and cost of grid flexibility provision by GPU-heavy AI-focused HPC data centers, along with a comparison with CPU-heavy general-purpose HPC data centers traditionally used for scientific computing. A data center flexibility cost model is proposed that accounts for the value of computing. Using real-world computing traces from 7 AI-focused HPC data centers and 7 general-purpose HPC data centers, along with computing prices from 3 cloud platforms, we find that AI-focused HPC data centers can offer greater flexibility at 50% lower cost compared to general-purpose HPC data centers for a range of power system services. By comparing the cost to flexibility market prices, we illustrate the financial profitability of flexibility provision for AI-focused HPC data centers. Finally, our flexibility and cost estimates can be scaled using parameters of other data centers through algebraic operations, avoiding the need for re-optimization.
Recent advancements in computational chemistry have leveraged the power of trans-former-based language models, such as MoLFormer, pre-trained using a vast amount of simplified molecular-input line-entry system (SMILES) sequences, to understand and predict molecular properties and activities, a critical step in fields like drug discovery and materials science. To further improve performance, researchers have introduced graph neural networks with graph-based molecular representations, such as GEM, incorporating the topology, geometry, 2D or even 3D structures of molecules into pre-training. While most of molecular graphs in existing studies were automatically converted from SMILES sequences, it is to assume that transformer-based language models might be able to implicitly learn structure-aware representations from SMILES sequences. In this paper, we propose \ours{} -- a SMILES-based \underline{\em M}olecular \underline{\em L}anguage \underline{\em M}odel, which randomly masking SMILES subsequences corresponding to specific molecular \underline{\em F}unctional \underline{\em G}roups to incorporate structure information of atoms during the pre-training phase. This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities. Extensive experimental evaluations across 11 benchmark classification and regression tasks in the chemical domain demonstrate the robustness and superiority of \ours{}. Our findings reveal that \ours{} outperforms existing pre-training models, either based on SMILES or graphs, in 9 out of the 11 downstream tasks, ranking as a close second in the remaining ones.
Variational Quantum Algorithms (VQAs) are a promising approach to leverage Noisy Intermediate-Scale Quantum (NISQ) computers. However, choosing optimal quantum circuits that efficiently solve a given VQA problem is a non-trivial task. Quantum Architecture Search (QAS) algorithms enable automatic generation of quantum circuits tailored to the provided problem. Existing QAS approaches typically adapt classical neural architecture search techniques, training machine learning models to sample relevant circuits, but often overlook the inherent quantum nature of the circuits they produce. By reformulating QAS from a quantum perspective, we propose a sampling-free differentiable QAS algorithm that models the search process as the evolution of a quantum mixed state, which emerges from the search space of quantum circuits. The mixed state formulation also enables our method to incorporate generic noise models, for example the depolarizing channel, which cannot be modeled by state vector simulation. We validate our method by finding circuits for state initialization and Hamiltonian optimization tasks, namely the variational quantum eigensolver and the unweighted max-cut problems. We show our approach to be comparable to, if not outperform, existing QAS techniques while requiring significantly fewer quantum simulations during training, and also show improved robustness levels to noise.
Modern robotics applications require an inverse kinematics (IK) solver that is fast, robust and consistent, and that provides all possible solutions. Currently, the Franka robot arm is the most widely used manipulator in robotics research. With 7 DOFs, the IK of this robot is not only complex due to its 1-DOF redundancy, but also due to the link offsets at the wrist and elbow. Due to this complexity, none of the Franka IK solvers available in the literature provide satisfactory results when used in real-world applications. Therefore, in this paper we introduce GeoFIK (Geometric Franka IK), an analytical IK solver that allows the use of different joint variables to resolve the redundancy. The approach uses screw theory to describe the entire geometry of the robot, allowing the computation of the Jacobian matrix prior to computation of joint angles. All singularities are identified and handled. As an example of how the geometric elements obtained by the IK can be exploited, a solver with the swivel angle as the free variable is provided. Several experiments are carried out to validate the speed, robustness and reliability of the GeoFIK against two state-of-the-art solvers.
Machine learning models have the potential to identify cardiovascular diseases (CVDs) early and accurately in primary healthcare settings, which is crucial for delivering timely treatment and management. Although population-based CVD risk models have been used traditionally, these models often do not consider variations in lifestyles, socioeconomic conditions, or genetic predispositions. Therefore, we aimed to develop machine learning models for CVD detection using primary healthcare data, compare the performance of different models, and identify the best models. We used data from the UK Biobank study, which included over 500,000 middle-aged participants from different primary healthcare centers in the UK. Data collected at baseline (2006--2010) and during imaging visits after 2014 were used in this study. Baseline characteristics, including sex, age, and the Townsend Deprivation Index, were included. Participants were classified as having CVD if they reported at least one of the following conditions: heart attack, angina, stroke, or high blood pressure. Cardiac imaging data such as electrocardiogram and echocardiography data, including left ventricular size and function, cardiac output, and stroke volume, were also used. We used 9 machine learning models (LSVM, RBFSVM, GP, DT, RF, NN, AdaBoost, NB, and QDA), which are explainable and easily interpretable. We reported the accuracy, precision, recall, and F-1 scores; confusion matrices; and area under the curve (AUC) curves.
Robots need to exploit high-quality information on grasped objects to interact with the physical environment. Haptic data can therefore be used for supplementing the visual modality. This paper investigates the use of Convolutional Neural Networks (CNN) and Long-Short Term Memory (LSTM) neural network architectures for object classification on Spatio-temporal tactile grasping data. Furthermore, we compared these methods using data from two different fingertip sensors (namely the BioTac SP and WTS-FT) in the same physical setup, allowing for a realistic comparison across methods and sensors for the same tactile object classification dataset. Additionally, we propose a way to create more training examples from the recorded data. The results show that the proposed method improves the maximum accuracy from 82.4% (BioTac SP fingertips) and 90.7% (WTS-FT fingertips) with complete time-series data to about 94% for both sensor types.
Autonomous Aerial Vehicle (AAV)-assisted Internet of Things (IoT) represents a collaborative architecture in which AAV allocate resources over 6G links to jointly enhance user-intent interpretation and overall network performance. Owing to this mutual dependence, improvements in intent inference and policy decisions on one component reinforce the efficiency of others, making highly reliable intent prediction and low-latency action execution essential. Although numerous approaches can model intent relationships, they encounter severe obstacles when scaling to high-dimensional action sequences and managing intensive on-board computation. We propose an Intent-Driven Framework for Autonomous Network Optimization comprising prediction and decision modules. First, implicit intent modeling is adopted to mitigate inaccuracies arising from ambiguous user expressions. For prediction, we introduce Hyperdimensional Transformer (HDT), which embeds data into a Hyperdimensional space via Hyperdimensional vector encoding and replaces standard matrix and attention operations with symbolic Hyperdimensional computations. For decision-making, where AAV must respond to user intent while planning trajectories, we design Double Actions based Multi-Agent Proximal Policy Optimization (DA-MAPPO). Building upon MAPPO, it samples actions through two independently parameterized networks and cascades the user-intent network into the trajectory network to maintain action dependencies. We evaluate our framework on a real IoT action dataset with authentic wireless data. Experimental results demonstrate that HDT and DA-MAPPO achieve superior performance across diverse scenarios.
In recent years, the development of smart edge computing systems to process information locally is on the rise. Many near-sensor machine learning (ML) approaches have been implemented to introduce accurate and energy efficient template matching operations in resource-constrained edge sensing systems, such as wearables. To introduce novel solutions that can be viable for extreme edge cases, hybrid solutions combining conventional and emerging technologies have started to be proposed. Deep Neural Networks (DNN) optimised for edge application alongside new approaches of computing (both device and architecture -wise) could be a strong candidate in implementing edge ML solutions that aim at competitive accuracy classification while using a fraction of the power of conventional ML solutions. In this work, we are proposing a hybrid software-hardware edge classifier aimed at the extreme edge near-sensor systems. The classifier consists of two parts: (i) an optimised digital tinyML network, working as a front-end feature extractor, and (ii) a back-end RRAM-CMOS analogue content addressable memory (ACAM), working as a final stage template matching system. The combined hybrid system exhibits a competitive trade-off in accuracy versus energy metric with EfrontendE_{front-end} = 96.23nJ96.23 nJ and EbackendE_{back-end} = 1.45nJ1.45 nJ for each classification operation compared with 78.06μ\muJ for the original teacher model, representing a 792-fold reduction, making it a viable solution for extreme edge applications.
Spiking Neural Networks (SNNs) emerged as a promising solution in the field of Artificial Neural Networks (ANNs), attracting the attention of researchers due to their ability to mimic the human brain and process complex information with remarkable speed and accuracy. This research aimed to optimise the training process of Liquid State Machines (LSMs), a recurrent architecture of SNNs, by identifying the most effective weight range to be assigned in SNN to achieve the least difference between desired and actual output. The experimental results showed that by using spike metrics and a range of weights, the desired output and the actual output of spiking neurons could be effectively optimised, leading to improved performance of SNNs. The results were tested and confirmed using three different weight initialisation approaches, with the best results obtained using the Barabasi-Albert random graph method.
The advancement of technology has revolutionised the agricultural industry, transitioning it from labour-intensive farming practices to automated, AI-powered management systems. In recent years, more intelligent livestock monitoring solutions have been proposed to enhance farming efficiency and productivity. This work presents a novel approach to animal activity recognition and movement tracking, leveraging tiny machine learning (TinyML) techniques, wireless communication framework, and microcontroller platforms to develop an efficient, cost-effective livestock sensing system. It collects and fuses accelerometer data and vision inputs to build a multi-modal network for three tasks: image classification, object detection, and behaviour recognition. The system is deployed and evaluated on commercial microcontrollers for real-time inference using embedded applications, demonstrating up to 270×\times model size reduction, less than 80ms response latency, and on-par performance comparable to existing methods. The incorporation of the TinyML technique allows for seamless data transmission between devices, benefiting use cases in remote locations with poor Internet connectivity. This work delivers a robust, scalable IoT-edge livestock monitoring solution adaptable to diverse farming needs, offering flexibility for future extensions.
Deep learning constitutes a pivotal component within the realm of machine learning, offering remarkable capabilities in tasks ranging from image recognition to natural language processing. However, this very strength also renders deep learning models susceptible to adversarial examples, a phenomenon pervasive across a diverse array of applications. These adversarial examples are characterized by subtle perturbations artfully injected into clean images or videos, thereby causing deep learning algorithms to misclassify or produce erroneous outputs. This susceptibility extends beyond the confines of digital domains, as adversarial examples can also be strategically designed to target human cognition, leading to the creation of deceptive media, such as deepfakes. Deepfakes, in particular, have emerged as a potent tool to manipulate public opinion and tarnish the reputations of public figures, underscoring the urgent need to address the security and ethical implications associated with adversarial examples. This article delves into the multifaceted world of adversarial examples, elucidating the underlying principles behind their capacity to deceive deep learning algorithms. We explore the various manifestations of this phenomenon, from their insidious role in compromising model reliability to their impact in shaping the contemporary landscape of disinformation and misinformation. To illustrate progress in combating adversarial examples, we showcase the development of a tailored Convolutional Neural Network (CNN) designed explicitly to detect deepfakes, a pivotal step towards enhancing model robustness in the face of adversarial threats. Impressively, this custom CNN has achieved a precision rate of 76.2% on the DFDC dataset.
Low-energy carbon Internet of Things (IoT) systems are essential for sustainable development, as they reduce carbon emissions while ensuring efficient device performance. Although classical algorithms manage energy efficiency and data processing within these systems, they often face scalability and real-time processing limitations. Quantum algorithms offer a solution to these challenges by delivering faster computations and improved optimization, thereby enhancing both the performance and sustainability of low-energy carbon IoT systems. Therefore, we introduced three quantum algorithms: quantum neural networks utilizing Pennylane (QNN-P), Qiskit (QNN-Q), and hybrid quantum neural networks (QNN-H). These algorithms are applied to two low-energy carbon IoT datasets room occupancy detection (RODD) and GPS tracker (GPSD). For the RODD dataset, QNN-P achieved the highest accuracy at 0.95, followed by QNN-H at 0.91 and QNN-Q at 0.80. Similarly, for the GPSD dataset, QNN-P attained an accuracy of 0.94, QNN-H 0.87, and QNN-Q 0.74. Furthermore, the robustness of these models is verified against six noise models. The proposed quantum algorithms demonstrate superior computational efficiency and scalability in noisy environments, making them highly suitable for future low-energy carbon IoT systems. These advancements pave the way for more sustainable and efficient IoT infrastructures, significantly minimizing energy consumption while maintaining optimal device performance.
We introduce a novel framework that integrates Hodge decomposition with Filtered Average Short-Term (FAST) functional connectivity to analyze dynamic functional connectivity (DFC) in EEG signals. This method leverages graph-based topology and simplicial analysis to explore transient connectivity patterns at multiple scales, addressing noise, sparsity, and computational efficiency. The temporal EEG data are first sparsified by keeping only the most globally important connections, instantaneous connectivity at these connections is then filtered by global long-term stable correlations. This tensor is then decomposed into three orthogonal components to study signal flows over higher-order structures such as triangle and loop structures. Our analysis of Alzheimer-related MCI patients show significant temporal differences related to higher-order interactions that a pairwise analysis on its own does not implicate. This allows us for the first time to capture higher-dimensional interactions at high temporal resolution in noisy EEG signal recordings.
This paper addresses the challenge of energy-constrained maritime monitoring networks by proposing an unmanned aerial vehicle (UAV)-enabled integrated sensing, communication, powering and backhaul transmission scheme with a tailored time-division duplex frame structure. Within each time slot, the UAV sequentially implements sensing, wireless charging and uplink receiving with buoys, and lastly forwards part of collected data to the central ship via backhaul links. Considering the tight coupling among these functions, we jointly optimize time allocation, UAV trajectory, UAV-buoy association, and power scheduling to maximize the performance of data collection, with the practical consideration of sea clutter effects during UAV sensing. A novel optimization framework combining alternating optimization, quadratic transform and augmented first-order Taylor approximation is developed, which demonstrates good convergence behavior and robustness. Simulation results show that under sensing quality-of-service constraint, buoys are able to achieve an average data rate over 22bps/Hz using around 2mW harvested power per active time slot, validating the scheme's effectiveness for open-sea monitoring. Additionally, it is found that under the influence of sea clutters, the optimal UAV trajectory always keeps a certain distance with buoys to strike a balance between sensing and other multi-functional transmissions.
There are no more papers matching your filters at the moment.