Zayed University
This paper reviews the emerging field of AI agents and agentic workflows in education, classifying them into reflection, planning, tool use, and multi-agent paradigms. It demonstrates how these approaches enhance educational applications, such as an automated essay scoring system that achieved a mean absolute error of 0.5612, outperforming standalone GPT-4o.
Online polarization poses a growing challenge for democratic discourse, yet most computational social science research remains monolingual, culturally narrow, or event-specific. We introduce POLAR, a multilingual, multicultural, and multievent dataset with over 23k instances in seven languages from diverse online platforms and real-world events. Polarization is annotated along three axes: presence, type, and manifestation, using a variety of annotation platforms adapted to each cultural context. We conduct two main experiments: (1) we fine-tune six multilingual pretrained language models in both monolingual and cross-lingual setups; and (2) we evaluate a range of open and closed large language models (LLMs) in few-shot and zero-shot scenarios. Results show that while most models perform well on binary polarization detection, they achieve substantially lower scores when predicting polarization types and manifestations. These findings highlight the complex, highly contextual nature of polarization and the need for robust, adaptable approaches in NLP and computational social science. All resources will be released to support further research and effective mitigation of digital polarization globally.
This work provides a comprehensive survey and taxonomy of benchmarks for Multimodal Large Language Models (MLLMs) across eight specialized disciplines, revealing a persistent performance gap between generalist MLLMs and human experts in tasks requiring deep domain knowledge and robust multimodal reasoning. It compiles and categorizes these benchmarks to highlight current capabilities, limitations, and areas requiring further research to bridge the "last mile problem" in real-world applications.
We present constraints on low mass dark matter-electron scattering and absorption interactions using a SuperCDMS high-voltage eV-resolution (HVeV) detector. Data were taken underground in the NEXUS facility located at Fermilab with an overburden of 225 meters of water equivalent. The experiment benefits from the minimizing of luminescence from the printed circuit boards in the detector holder used in all previous HVeV studies. A blind analysis of 6.1gdays6.1\,\mathrm{g\cdot days} of exposure produces exclusion limits for dark matter-electron scattering cross-sections for masses as low as 1MeV/c21\,\mathrm{MeV}/c^2, as well as on the photon-dark photon mixing parameter and the coupling constant between axion-like particles and electrons for particles with masses >1.2eV/c2>1.2\,\mathrm{eV}/c^2 probed via absorption processes.
Recent advances in deep neural networks (DNNs) have led to remarkable success across a wide range of tasks. However, their susceptibility to adversarial perturbations remains a critical vulnerability. Existing diffusion-based adversarial purification methods often require intensive iterative denoising, severely limiting their practical deployment. In this paper, we propose Diffusion Bridge Distillation for Purification (DBLP), a novel and efficient diffusion-based framework for adversarial purification. Central to our approach is a new objective, noise bridge distillation, which constructs a principled alignment between the adversarial noise distribution and the clean data distribution within a latent consistency model (LCM). To further enhance semantic fidelity, we introduce adaptive semantic enhancement, which fuses multi-scale pyramid edge maps as conditioning input to guide the purification process. Extensive experiments across multiple datasets demonstrate that DBLP achieves state-of-the-art (SOTA) robust accuracy, superior image quality, and around 0.2s inference time, marking a significant step toward real-time adversarial purification.
This paper presents a framework using Multi-Agent Large Language Models to enhance complex problem-solving in engineering senior design projects
We present ZAEBUC-Spoken, a multilingual multidialectal Arabic-English speech corpus. The corpus comprises twelve hours of Zoom meetings involving multiple speakers role-playing a work situation where Students brainstorm ideas for a certain topic and then discuss it with an Interlocutor. The meetings cover different topics and are divided into phases with different language setups. The corpus presents a challenging set for automatic speech recognition (ASR), including two languages (Arabic and English) with Arabic spoken in multiple variants (Modern Standard Arabic, Gulf Arabic, and Egyptian Arabic) and English used with various accents. Adding to the complexity of the corpus, there is also code-switching between these languages and dialects. As part of our work, we take inspiration from established sets of transcription guidelines to present a set of guidelines handling issues of conversational speech, code-switching and orthography of both languages. We further enrich the corpus with two layers of annotations; (1) dialectness level annotation for the portion of the corpus where mixing occurs between different variants of Arabic, and (2) automatic morphological annotations, including tokenization, lemmatization, and part-of-speech tagging.
Large Language Models (LLMs) are predominantly trained and aligned in ways that reinforce Western-centric epistemologies and socio-cultural norms, leading to cultural homogenization and limiting their ability to reflect global civilizational plurality. Existing benchmarking frameworks fail to adequately capture this bias, as they rely on rigid, closed-form assessments that overlook the complexity of cultural inclusivity. To address this, we introduce WorldView-Bench, a benchmark designed to evaluate Global Cultural Inclusivity (GCI) in LLMs by analyzing their ability to accommodate diverse worldviews. Our approach is grounded in the Multiplex Worldview proposed by Senturk et al., which distinguishes between Uniplex models, reinforcing cultural homogenization, and Multiplex models, which integrate diverse perspectives. WorldView-Bench measures Cultural Polarization, the exclusion of alternative perspectives, through free-form generative evaluation rather than conventional categorical benchmarks. We implement applied multiplexity through two intervention strategies: (1) Contextually-Implemented Multiplex LLMs, where system prompts embed multiplexity principles, and (2) Multi-Agent System (MAS)-Implemented Multiplex LLMs, where multiple LLM agents representing distinct cultural perspectives collaboratively generate responses. Our results demonstrate a significant increase in Perspectives Distribution Score (PDS) entropy from 13% at baseline to 94% with MAS-Implemented Multiplex LLMs, alongside a shift toward positive sentiment (67.7%) and enhanced cultural balance. These findings highlight the potential of multiplex-aware AI evaluation in mitigating cultural bias in LLMs, paving the way for more inclusive and ethically aligned AI systems.
This survey presents a comprehensive review of current literature on Explainable Artificial Intelligence (XAI) methods for cyber security applications. Due to the rapid development of Internet-connected systems and Artificial Intelligence in recent years, Artificial Intelligence including Machine Learning (ML) and Deep Learning (DL) has been widely utilized in the fields of cyber security including intrusion detection, malware detection, and spam filtering. However, although Artificial Intelligence-based approaches for the detection and defense of cyber attacks and threats are more advanced and efficient compared to the conventional signature-based and rule-based cyber security strategies, most ML-based techniques and DL-based techniques are deployed in the black-box manner, meaning that security experts and customers are unable to explain how such procedures reach particular conclusions. The deficiencies of transparency and interpretability of existing Artificial Intelligence techniques would decrease human users' confidence in the models utilized for the defense against cyber attacks, especially in current situations where cyber attacks become increasingly diverse and complicated. Therefore, it is essential to apply XAI in the establishment of cyber security models to create more explainable models while maintaining high accuracy and allowing human users to comprehend, trust, and manage the next generation of cyber defense mechanisms. Although there are papers reviewing Artificial Intelligence applications in cyber security areas and the vast literature on applying XAI in many fields including healthcare, financial services, and criminal justice, the surprising fact is that there are currently no survey research articles that concentrate on XAI applications in cyber security.
The potential of artificial intelligence (AI)-based large language models (LLMs) holds considerable promise in revolutionizing education, research, and practice. However, distinguishing between human-written and AI-generated text has become a significant task. This paper presents a comparative study, introducing a novel dataset of human-written and LLM-generated texts in different genres: essays, stories, poetry, and Python code. We employ several machine learning models to classify the texts. Results demonstrate the efficacy of these models in discerning between human and AI-generated text, despite the dataset's limited sample size. However, the task becomes more challenging when classifying GPT-generated text, particularly in story writing. The results indicate that the models exhibit superior performance in binary classification tasks, such as distinguishing human-generated text from a specific LLM, compared to the more complex multiclass tasks that involve discerning among human-generated and multiple LLMs. Our findings provide insightful implications for AI text detection while our dataset paves the way for future research in this evolving area.
This paper introduces ORD-CC32 , an open research dataset derived from the 1932 Cairo Congress of Arab Music recordings, a historically significant collection representing diverse Arab musical traditions. The dataset includes structured metadata, melodic and rhythmic mode tags (maqam and iqa), manually labeled tonic information, and acoustic features extracted using state-of-the-art pitch detection methods. These resources support computational studies of tuning, temperament, and regional variations in Arab music. A case study using pitch histograms demonstrates the potential for data-driven analysis of microtonal differences across regions. By making this dataset openly available, we aim to enable interdisciplinary research in computational ethnomusicology, music information retrieval (MIR), cultural studies, and digital heritage preservation. ORD-CC32 is shared on Zenodo with tools for feature extraction and metadata retrieval.
Sixth Generation (6G) wireless networks, which are expected to be deployed in the 2030s, have already created great excitement in academia and the private sector with their extremely high communication speed and low latency rates. However, despite the ultra-low latency, high throughput, and AI-assisted orchestration capabilities they promise, they are vulnerable to stealthy and long-term Advanced Persistent Threats (APTs). Large Language Models (LLMs) stand out as an ideal candidate to fill this gap with their high success in semantic reasoning and threat intelligence. In this paper, we present a comprehensive systematic review and taxonomy study for LLM-assisted APT detection in 6G networks. We address five research questions, namely, semantic merging of fragmented logs, encrypted traffic analysis, edge distribution constraints, dataset/modeling techniques, and reproducibility trends, by leveraging most recent studies on the intersection of LLMs, APTs, and 6G wireless networks. We identify open challenges such as explainability gaps, data scarcity, edge hardware limitations, and the need for real-time slicing-aware adaptation by presenting various taxonomies such as granularity, deployment models, and kill chain stages. We then conclude the paper by providing several research gaps in 6G infrastructures for future researchers. To the best of our knowledge, this paper is the first comprehensive systematic review and classification study on LLM-based APT detection in 6G networks.
This paper introduces the Balanced Arabic Readability Evaluation Corpus (BAREC), a large-scale, fine-grained dataset for Arabic readability assessment. BAREC consists of 69,441 sentences spanning 1+ million words, carefully curated to cover 19 readability levels, from kindergarten to postgraduate comprehension. The corpus balances genre diversity, topical coverage, and target audiences, offering a comprehensive resource for evaluating Arabic text complexity. The corpus was fully manually annotated by a large team of annotators. The average pairwise inter-annotator agreement, measured by Quadratic Weighted Kappa, is 81.8%, reflecting a high level of substantial agreement. Beyond presenting the corpus, we benchmark automatic readability assessment across different granularity levels, comparing a range of techniques. Our results highlight the challenges and opportunities in Arabic readability modeling, demonstrating competitive performance across various methods. To support research and education, we make BAREC openly available, along with detailed annotation guidelines and benchmark results.
As large language models (LLMs) continue to advance, evaluating their comprehensive capabilities becomes significant for their application in various fields. This research study comprehensively evaluates the language, vision, speech, and multimodal capabilities of GPT-4o. The study employs standardized exam questions, reasoning tasks, and translation assessments to assess the model's language capability. Additionally, GPT-4o's vision and speech capabilities are tested through image classification and object recognition tasks, as well as accent classification. The multimodal evaluation assesses the model's performance in integrating visual and linguistic data. Our findings reveal that GPT-4o demonstrates high accuracy and efficiency across multiple domains in language and reasoning capabilities, excelling in tasks that require few-shot learning. GPT-4o also provides notable improvements in multimodal tasks compared to its predecessors. However, the model shows variability and faces limitations in handling complex and ambiguous inputs, particularly in audio and vision capabilities. This paper highlights the need for more comprehensive benchmarks and robust evaluation frameworks, encompassing qualitative assessments involving human judgment as well as error analysis. Future work should focus on expanding datasets, investigating prompt-based assessment, and enhancing few-shot learning techniques to test the model's practical applicability and performance in real-world scenarios.
Purpose: The increasing number of cyber-attacks has elevated the importance of cybersecurity for organizations. This has also increased the demand for professionals with the necessary skills to protect these organizations. As a result, many individuals are looking to enter the field of cybersecurity. However, there is a lack of clear understanding of the skills required for a successful career in this field. In this paper, we identify the skills required for cybersecurity professionals. We also determine how the demand for cyber skills relates to various cyber roles such as security analyst and security architect. Furthermore, we identify the programming languages that are important for cybersecurity professionals. Design/Methodology: For this study, we have collected and analyzed data from 12,161 job ads and 49,002 Stack Overflow posts. By examining this, we identified patterns and trends related to skill requirements, role-specific demands, and programming languages in cybersecurity. Findings: Our results reveal that (i) communication skills and project management skills are the most important soft skills, (ii) as compared to soft skills, the demand for technical skills varies more across various cyber roles, and (iii) Java is the most commonly used programming language. Originality: Our findings serve as a guideline for individuals aiming to get into the field of cybersecurity. Moreover, our findings are useful in terms of informing educational institutes to teach the correct set of skills to students doing degrees in cybersecurity.
Traditional sea exploration faces significant challenges due to extreme conditions, limited visibility, and high costs, resulting in vast unexplored ocean regions. This paper presents an innovative AI-powered Autonomous Underwater Vehicle (AUV) system designed to overcome these limitations by automating underwater object detection, analysis, and reporting. The system integrates YOLOv12 Nano for real-time object detection, a Convolutional Neural Network (CNN) (ResNet50) for feature extraction, Principal Component Analysis (PCA) for dimensionality reduction, and K-Means++ clustering for grouping marine objects based on visual characteristics. Furthermore, a Large Language Model (LLM) (GPT-4o Mini) is employed to generate structured reports and summaries of underwater findings, enhancing data interpretation. The system was trained and evaluated on a combined dataset of over 55,000 images from the DeepFish and OzFish datasets, capturing diverse Australian marine environments. Experimental results demonstrate the system's capability to detect marine objects with a mAP@0.5 of 0.512, a precision of 0.535, and a recall of 0.438. The integration of PCA effectively reduced feature dimensionality while preserving 98% variance, facilitating K-Means clustering which successfully grouped detected objects based on visual similarities. The LLM integration proved effective in generating insightful summaries of detections and clusters, supported by location data. This integrated approach significantly reduces the risks associated with human diving, increases mission efficiency, and enhances the speed and depth of underwater data analysis, paving the way for more effective scientific research and discovery in challenging marine environments.
Graph Transformers have recently achieved remarkable progress in graph representation learning by capturing long-range dependencies through self-attention. However, their quadratic computational complexity and inability to effectively model heterogeneous semantics severely limit their scalability and generalization on real-world heterogeneous graphs. To address these issues, we propose HeSRN, a novel Heterogeneous Slot-aware Retentive Network for efficient and expressive heterogeneous graph representation learning. HeSRN introduces a slot-aware structure encoder that explicitly disentangles node-type semantics by projecting heterogeneous features into independent slots and aligning their distributions through slot normalization and retention-based fusion, effectively mitigating the semantic entanglement caused by forced feature-space unification in previous Transformer-based models. Furthermore, we replace the self-attention mechanism with a retention-based encoder, which models structural and contextual dependencies in linear time complexity while maintaining strong expressive power. A heterogeneous retentive encoder is further employed to jointly capture both local structural signals and global heterogeneous semantics through multi-scale retention layers. Extensive experiments on four real-world heterogeneous graph datasets demonstrate that HeSRN consistently outperforms state-of-the-art heterogeneous graph neural networks and Graph Transformer baselines on node classification tasks, achieving superior accuracy with significantly lower computational complexity.
The SuperCDMS Collaboration is currently building SuperCDMS SNOLAB, a dark matter search focused on nucleon-coupled dark matter in the 1-5 GeV/c2^2 mass range. Looking to the future, the Collaboration has developed a set of experience-based upgrade scenarios, as well as novel directions, to extend the search for dark matter using the SuperCDMS technology in the SNOLAB facility. The experienced-based scenarios are forecasted to probe many square decades of unexplored dark matter parameter space below 5 GeV/c2^2, covering over 6 decades in mass: 1-100 eV/c2^2 for dark photons and axion-like particles, 1-100 MeV/c2^2 for dark-photon-coupled light dark matter, and 0.05-5 GeV/c2^2 for nucleon-coupled dark matter. They will reach the neutrino fog in the 0.5-5 GeV/c2^2 mass range and test a variety of benchmark models and sharp targets. The novel directions involve greater departures from current SuperCDMS technology but promise even greater reach in the long run, and their development must begin now for them to be available in a timely fashion. The experienced-based upgrade scenarios rely mainly on dramatic improvements in detector performance based on demonstrated scaling laws and reasonable extrapolations of current performance. Importantly, these improvements in detector performance obviate significant reductions in background levels beyond current expectations for the SuperCDMS SNOLAB experiment. Given that the dominant limiting backgrounds for SuperCDMS SNOLAB are cosmogenically created radioisotopes in the detectors, likely amenable only to isotopic purification and an underground detector life-cycle from before crystal growth to detector testing, the potential cost and time savings are enormous and the necessary improvements much easier to prototype.
Volunteer computing uses Internet-connected devices (laptops, PCs, smart devices, etc.), in which their owners volunteer them as storage and computing power resources, has become an essential mechanism for resource management in numerous applications. The growth of the volume and variety of data traffic in the Internet leads to concerns on the robustness of cyberphysical systems especially for critical infrastructures. Therefore, the implementation of an efficient Intrusion Detection System for gathering such sensory data has gained vital importance. In this paper, we present a comparative study of Artificial Intelligence (AI)-driven intrusion detection systems for wirelessly connected sensors that track crucial applications. Specifically, we present an in-depth analysis of the use of machine learning, deep learning and reinforcement learning solutions to recognize intrusive behavior in the collected traffic. We evaluate the proposed mechanisms by using KD'99 as real attack data-set in our simulations. Results present the performance metrics for three different IDSs namely the Adaptively Supervised and Clustered Hybrid IDS (ASCH-IDS), Restricted Boltzmann Machine-based Clustered IDS (RBC-IDS) and Q-learning based IDS (QL-IDS) to detect malicious behaviors. We also present the performance of different reinforcement learning techniques such as State-Action-Reward-State-Action Learning (SARSA) and the Temporal Difference learning (TD). Through simulations, we show that QL-IDS performs with 100% detection rate while SARSA-IDS and TD-IDS perform at the order of 99.5%.
The rising use of Large Language Models (LLMs) to create and disseminate malware poses a significant cybersecurity challenge due to their ability to generate and distribute attacks with ease. A single prompt can initiate a wide array of malicious activities. This paper addresses this critical issue through a multifaceted approach. First, we provide a comprehensive overview of LLMs and their role in malware detection from diverse sources. We examine five specific applications of LLMs: Malware honeypots, identification of text-based threats, code analysis for detecting malicious intent, trend analysis of malware, and detection of non-standard disguised malware. Our review includes a detailed analysis of the existing literature and establishes guiding principles for the secure use of LLMs. We also introduce a classification scheme to categorize the relevant literature. Second, we propose performance metrics to assess the effectiveness of LLMs in these contexts. Third, we present a risk mitigation framework designed to prevent malware by leveraging LLMs. Finally, we evaluate the performance of our proposed risk mitigation strategies against various factors and demonstrate their effectiveness in countering LLM-enabled malware. The paper concludes by suggesting future advancements and areas requiring deeper exploration in this fascinating field of artificial intelligence.
There are no more papers matching your filters at the moment.