The University of Alabama
Researchers from the University of Alabama, Delft University of Technology, Mathworks, and the University of Florida developed SR-SPECNet, a deep learning approach that transforms 2D radar heatmap enhancement into a 1D angular spectra estimation problem. This method improves radar image quality, achieving an inference time of 3.12 ms and using 1 million parameters, outperforming 2D and 3D U-Nets.
Researchers at The University of Alabama propose the Neurocognitive-Inspired Intelligence (NII) framework, moving beyond structural mimicry to functional emulation of human cognition. This conceptual framework aims to develop more general, adaptive, and robust AI systems capable of human-like learning and reasoning.
FALCON, a framework developed by researchers including those from the National Security Agency, employs agentic large language models and a multi-phase validation pipeline to autonomously generate and validate Intrusion Detection System rules. It achieved 95% average accuracy in automated rule generation and introduced a specialized CTI-Rule Semantic Scorer that outperformed general-purpose models in aligning threat intelligence with rules.
Transportation Cyber-Physical Systems (TCPS) integrate physical elements, such as transportation infrastructure and vehicles, with cyber elements via advanced communication technologies, allowing them to interact seamlessly. This integration enhances the efficiency, safety, and sustainability of transportation systems. TCPS rely heavily on cryptographic security to protect sensitive information transmitted between vehicles, transportation infrastructure, and other entities within the transportation ecosystem, ensuring data integrity, confidentiality, and authenticity. Traditional cryptographic methods have been employed to secure TCPS communications, but the advent of quantum computing presents a significant threat to these existing security measures. Therefore, integrating Post-Quantum Cryptography (PQC) into TCPS is essential to maintain secure and resilient communications. While PQC offers a promising approach to developing cryptographic algorithms resistant to quantum attacks, artificial intelligence (AI) can enhance PQC by optimizing algorithm selection, resource allocation, and adapting to evolving threats in real-time. AI-driven PQC approaches can improve the efficiency and effectiveness of PQC implementations, ensuring robust security without compromising system performance. This chapter introduces TCPS communication protocols, discusses the vulnerabilities of corresponding communications to cyber-attacks, and explores the limitations of existing cryptographic methods in the quantum era. By examining how AI can strengthen PQC solutions, the chapter presents cyber-resilient communication strategies for TCPS.
We propose a hybrid quantum-classical reinforcement learning framework for sector rotation in the Taiwan stock market. Our system employs Proximal Policy Optimization (PPO) as the backbone algorithm and integrates both classical architectures (LSTM, Transformer) and quantum-enhanced models (QNN, QRWKV, QASA) as policy and value networks. An automated feature engineering pipeline extracts financial indicators from capital share data to ensure consistent model input across all configurations. Empirical backtesting reveals a key finding: although quantum-enhanced models consistently achieve higher training rewards, they underperform classical models in real-world investment metrics such as cumulative return and Sharpe ratio. This discrepancy highlights a core challenge in applying reinforcement learning to financial domains -- namely, the mismatch between proxy reward signals and true investment objectives. Our analysis suggests that current reward designs may incentivize overfitting to short-term volatility rather than optimizing risk-adjusted returns. This issue is compounded by the inherent expressiveness and optimization instability of quantum circuits under Noisy Intermediate-Scale Quantum (NISQ) constraints. We discuss the implications of this reward-performance gap and propose directions for future improvement, including reward shaping, model regularization, and validation-based early stopping. Our work offers a reproducible benchmark and critical insights into the practical challenges of deploying quantum reinforcement learning in real-world finance.
Background: Large language models (LLMs) such as ChatGPT are increasingly used in introductory programming courses to provide real-time code generation, debugging, and explanations. While these tools can boost productivity and code quality, concerns remain about over-reliance and potential impacts on conceptual learning. Objective: To investigate how ChatGPT access affects code quality, conceptual understanding, task completion times, and student perceptions in a CS1 course. Methods: We conducted a counterbalanced, quasi-experimental study in which students alternated between ChatGPT and non-ChatGPT conditions across two programming assignments in C (functions and structures). We evaluated their code submissions using multidimensional rubrics, conceptual post-surveys, and task completion time. Results: Students who had access to ChatGPT produced significantly higher rubric scores for code quality and completed tasks in less time compared to those without access. However, gains in conceptual understanding were mixed, lower for the functions topic but higher for the structures topic. Students reported positive experiences with ChatGPT, citing its value for debugging and practice, while expressing concerns about accuracy and long-term skill development. Conclusions: ChatGPT can enhance code quality and efficiency for novice programmers, but may not uniformly improve conceptual understanding. Structured integration and complementary instructional strategies are recommended to foster independent problem-solving skills.
Indoor navigation remains a complex challenge due to the absence of reliable GPS signals and the architectural intricacies of large enclosed environments. This study presents an indoor localization and navigation approach that integrates vision-based localization with large language model (LLM)-based navigation. The localization system utilizes a ResNet-50 convolutional neural network fine-tuned through a two-stage process to identify the user's position using smartphone camera input. To complement localization, the navigation module employs an LLM, guided by a carefully crafted system prompt, to interpret preprocessed floor plan images and generate step-by-step directions. Experimental evaluation was conducted in a realistic office corridor with repetitive features and limited visibility to test localization robustness. The model achieved high confidence and an accuracy of 96% across all tested waypoints, even under constrained viewing conditions and short-duration queries. Navigation tests using ChatGPT on real building floor maps yielded an average instruction accuracy of 75%, with observed limitations in zero-shot reasoning and inference time. This research demonstrates the potential for scalable, infrastructure-free indoor navigation using off-the-shelf cameras and publicly available floor plans, particularly in resource-constrained settings like hospitals, airports, and educational institutions.
Surface material recognition is a key component in robotic perception and physical interaction, particularly when leveraging both tactile and visual sensory inputs. In this work, we propose Surformer v1, a transformer-based architecture designed for surface classification using structured tactile features and PCA-reduced visual embeddings extracted via ResNet-50. The model integrates modality-specific encoders with cross-modal attention layers, enabling rich interactions between vision and touch. Currently, state-of-the-art deep learning models for vision tasks have achieved remarkable performance. With this in mind, our first set of experiments focused exclusively on tactile-only surface classification. Using feature engineering, we trained and evaluated multiple machine learning models, assessing their accuracy and inference time. We then implemented an encoder-only Transformer model tailored for tactile features. This model not only achieved the highest accuracy but also demonstrated significantly faster inference time compared to other evaluated models, highlighting its potential for real-time applications. To extend this investigation, we introduced a multimodal fusion setup by combining vision and tactile inputs. We trained both Surformer v1 (using structured features) and Multimodal CNN (using raw images) to examine the impact of feature-based versus image-based multimodal learning on classification accuracy and computational efficiency. The results showed that Surformer v1 achieved 99.4% accuracy with an inference time of 0.77 ms, while the Multimodal CNN achieved slightly higher accuracy but required significantly more inference time. These findings suggest Surformer v1 offers a compelling balance between accuracy, efficiency, and computational cost for surface material recognition.
Error-bounded lossy compression is a state-of-the-art data reduction technique for HPC applications because it not only significantly reduces storage overhead but also can retain high fidelity for postanalysis. Because supercomputers and HPC applications are becoming heterogeneous using accelerator-based architectures, in particular GPUs, several development teams have recently released GPU versions of their lossy compressors. However, existing state-of-the-art GPU-based lossy compressors suffer from either low compression and decompression throughput or low compression quality. In this paper, we present an optimized GPU version, cuSZ, for one of the best error-bounded lossy compressors-SZ. To the best of our knowledge, cuSZ is the first error-bounded lossy compressor on GPUs for scientific data. Our contributions are fourfold. (1) We propose a dual-quantization scheme to entirely remove the data dependency in the prediction step of SZ such that this step can be performed very efficiently on GPUs. (2) We develop an efficient customized Huffman coding for the SZ compressor on GPUs. (3) We implement cuSZ using CUDA and optimize its performance by improving the utilization of GPU memory bandwidth. (4) We evaluate our cuSZ on five real-world HPC application datasets from the Scientific Data Reduction Benchmarks and compare it with other state-of-the-art methods on both CPUs and GPUs. Experiments show that our cuSZ improves SZ's compression throughput by up to 370.1x and 13.1x, respectively, over the production version running on single and multiple CPU cores, respectively, while getting the same quality of reconstructed data. It also improves the compression ratio by up to 3.48x on the tested data compared with another state-of-the-art GPU supported lossy compressor.
Researchers at Los Alamos National Laboratory developed a knowledge distillation framework to improve machine-learned coarse-grained force fields. This approach trains student models using denoised forces and per-bead energies from an ensemble of teacher models, yielding an accurate and stable coarse-grained model that performs five times faster than the teacher ensemble in molecular dynamics simulations.
Context: Social debt describes the accumulation of unforeseen project costs (or potential costs) from sub-optimal software development processes. Community smells are sociotechnical anti-patterns and one source of social debt that impact software teams, development processes, outcomes, and organizations. Objective: To provide an overview of community smells based on published literature, and describe future research. Method: We conducted a systematic literature review (SLR) to identify properties, understand origins and evolution, and describe the emergence of community smells. This SLR explains the impact of community smells on teamwork and team performance. Results: We include 25 studies. Social debt describes the impacts of poor socio-technical decisions on work environments, people, software products, and society. For each of the 30 identified community smells, we provide a description, management approaches, organizational strategies, and mitigation effectiveness. We identify five groups of management approaches: organizational strategies, frameworks, models, tools, and guidelines. We describe 11 properties of community smells. We develop the Community Smell Stages Framework to concisely describe the origin and evolution of community smells. We describe the causes and effects for each community smell. We identify and describe 8 types of causes and 11 types of effects for community smells. Finally, we provide 8 Sankey diagrams that offer insights into threats the community smells pose to teamwork factors and team performance. Conclusion: Community smells explain the influence work conditions have on software developers. The literature is scarce and focuses on a small number of community smells. Thus, community smells still need more research. This review organizes the state of the art about community smells and provides motivation for future research along with educational material.
The recent advancements in mathematical modeling of biochemical systems have generated increased interest in sensitivity analysis methodologies. There are two primary approaches for analyzing these mathematical models: the stochastic approach, which employs chemical master equations (CME), and the deterministic approach, which utilizes ordinary differential equations (ODEs). The intractable discrete states present in most biochemical processes render the direct simulation of the CME infeasible. Moment closure approximations are recognized for their numerical efficiency in estimating the statistics of the CME solution. Since classical sensitivity analysis is not directly applicable to stochastic modeling, this work conducts sensitivity analysis using moment-based ordinary differential equations (ODEs) to identify key parameters that significantly influence the dynamics of the model. We conduct numerical tests to evaluate the effectiveness of both local and global sensitivity analyses of the moment-based ODEs. These tests enable us to examine how variations in input parameters influence the model's output.
Understanding material surfaces from sparse visual cues is critical for applications in robotics, simulation, and material perception. However, most existing methods rely on dense or full-scene observations, limiting their effectiveness in constrained or partial view environment. To address this challenge, we introduce SMARC, a unified model for Surface MAterial Reconstruction and Classification from minimal visual input. By giving only a single 10% contiguous patch of the image, SMARC recognizes and reconstructs the full RGB surface while simultaneously classifying the material category. Our architecture combines a Partial Convolutional U-Net with a classification head, enabling both spatial inpainting and semantic understanding under extreme observation sparsity. We compared SMARC against five models including convolutional autoencoders [17], Vision Transformer (ViT) [13], Masked Autoencoder (MAE) [5], Swin Transformer [9], and DETR [2] using Touch and Go dataset [16] of real-world surface textures. SMARC achieves state-of-the-art results with a PSNR of 17.55 dB and a material classification accuracy of 85.10%. Our findings highlight the advantages of partial convolution in spatial reasoning under missing data and establish a strong foundation for minimal-vision surface understanding.
Today's high-performance computing (HPC) applications are producing vast volumes of data, which are challenging to store and transfer efficiently during the execution, such that data compression is becoming a critical technique to mitigate the storage burden and data movement cost. Huffman coding is arguably the most efficient Entropy coding algorithm in information theory, such that it could be found as a fundamental step in many modern compression algorithms such as DEFLATE. On the other hand, today's HPC applications are more and more relying on the accelerators such as GPU on supercomputers, while Huffman encoding suffers from low throughput on GPUs, resulting in a significant bottleneck in the entire data processing. In this paper, we propose and implement an efficient Huffman encoding approach based on modern GPU architectures, which addresses two key challenges: (1) how to parallelize the entire Huffman encoding algorithm, including codebook construction, and (2) how to fully utilize the high memory-bandwidth feature of modern GPU architectures. The detailed contribution is four-fold. (1) We develop an efficient parallel codebook construction on GPUs that scales effectively with the number of input symbols. (2) We propose a novel reduction based encoding scheme that can efficiently merge the codewords on GPUs. (3) We optimize the overall GPU performance by leveraging the state-of-the-art CUDA APIs such as Cooperative Groups. (4) We evaluate our Huffman encoder thoroughly using six real-world application datasets on two advanced GPUs and compare with our implemented multi-threaded Huffman encoder. Experiments show that our solution can improve the encoding throughput by up to 5.0X and 6.8X on NVIDIA RTX 5000 and V100, respectively, over the state-of-the-art GPU Huffman encoder, and by up to 3.3X over the multi-thread encoder on two 28-core Xeon Platinum 8280 CPUs.
We investigate the Steklov eigenvalue problem in an exterior Euclidean domain. First, we present several formulations of this problem and establish the equivalences between them. Next, we examine various properties of the exterior Steklov eigenvalues and eigenfunctions. One of our main findings is an Escobar-type lower bound for the first exterior Steklov eigenvalue on convex domains in dimensions three and higher. This bound is expressed in terms of the principal curvatures of the boundary and is sharp, with equality attained for a ball. Moreover, it implies the existence of a sequence of convex domains with fixed volume and the first exterior Steklov eigenvalues tending to infinity. This contrasts with the interior case, as well as with the two-dimensional exterior case, for which we show that an analogue of the Weinstock isoperimetric inequality holds.
SineKAN introduces a Kolmogorov-Arnold Network (KAN) variant that employs re-weighted sine functions as learnable activations, achieving faster inference and comparable or improved accuracy over existing KAN implementations while exhibiting enhanced stability and generalization for periodic data.
8
American football games attract significant worldwide attention every year. Identifying players from videos in each play is also essential for the indexing of player participation. Processing football game video presents great challenges such as crowded settings, distorted objects, and imbalanced data for identifying players, especially jersey numbers. In this work, we propose a deep learning-based player tracking system to automatically track players and index their participation per play in American football games. It is a two-stage network design to highlight areas of interest and identify jersey number information with high accuracy. First, we utilize an object detection network, a detection transformer, to tackle the player detection problem in a crowded context. Second, we identify players using jersey number recognition with a secondary convolutional neural network, then synchronize it with a game clock subsystem. Finally, the system outputs a complete log in a database for play indexing. We demonstrate the effectiveness and reliability of player tracking system by analyzing the qualitative and quantitative results on football videos. The proposed system shows great potential for implementation in and analysis of football broadcast video.
Object affordance and volumetric information are essential in devising effective grasping strategies under task-specific constraints. This paper presents an approach for inferring suitable grasping strategies from limited partial views of an object. To achieve this, a recurrent generative adversarial network (R-GAN) was proposed by incorporating a recurrent generator with long short-term memory (LSTM) units for it to process a variable number of depth scans. To determine object affordances, the AffordPose knowledge dataset is utilized as prior knowledge. Affordance retrieving is defined by the volume similarity measured via Chamfer Distance and action similarities. A Proximal Policy Optimization (PPO) reinforcement learning model is further implemented to refine the retrieved grasp strategies for task-oriented grasping. The retrieved grasp strategies were evaluated on a dual-arm mobile manipulation robot with an overall grasping accuracy of 89% for four tasks: lift, handle grasp, wrap grasp, and press.
Proactive safety systems aim to mitigate risks by anticipating potential conflicts between vehicles and enabling early intervention to prevent work zone-related crashes. This study presents an infrastructure-enabled proactive work zone safety warning system that leverages a Digital Twin environment, integrating real-time multi-sensor data, detailed High-Definition (HD) maps, and a historical prediction attention mechanism-based trajectory prediction model. Using a co-simulation environment that combines Simulation of Urban MObility (SUMO) and CAR Learning to Act (CARLA) simulators, along with Lanelet2 HD maps and the Historical Prediction Network (HPNet) model, we demonstrate effective trajectory prediction and early warning generation for vehicle interactions in freeway work zones. To evaluate the accuracy of predicted trajectories, we use two standard metrics: Joint Average Displacement Error (ADE) and Joint Final Displacement Error (FDE). Specifically, the infrastructure-enabled HPNet model demonstrates superior performance on the work-zone datasets generated from the co-simulation environment, achieving a minimum Joint FDE of 0.3228 meters and a minimum Joint ADE of 0.1327 meters, lower than the benchmarks on the Argoverse (minJointFDE: 1.0986 m, minJointADE: 0.7612 m) and Interaction (minJointFDE: 0.8231 m, minJointADE: 0.2548 m) datasets. In addition, our proactive safety warning generation application, utilizing vehicle bounding boxes and probabilistic conflict modeling, demonstrates its capability to issue alerts for potential vehicle conflicts.
Autistic students often face challenges in social interaction, which can hinder their educational and personal development. This study introduces Echo-Teddy, a Large Language Model (LLM)-based social robot designed to support autistic students in developing social and communication skills. Unlike previous chatbot-based solutions, Echo-Teddy leverages advanced LLM capabilities to provide more natural and adaptive interactions. The research addresses two key questions: (1) What are the design principles and initial prototype characteristics of an effective LLM-based social robot for autistic students? (2) What improvements can be made based on developer reflection-on-action and expert interviews? The study employed a mixed-methods approach, combining prototype development with qualitative analysis of developer reflections and expert interviews. Key design principles identified include customizability, ethical considerations, and age-appropriate interactions. The initial prototype, built on a Raspberry Pi platform, features custom speech components and basic motor functions. Evaluation of the prototype revealed potential improvements in areas such as user interface, educational value, and practical implementation in educational settings. This research contributes to the growing field of AI-assisted special education by demonstrating the potential of LLM-based social robots in supporting autistic students. The findings provide valuable insights for future developments in accessible and effective social support tools for special education.
There are no more papers matching your filters at the moment.