BITS Pilani
Researchers from BITS Pilani developed multi-agent LLM-based techniques for grading student code, specifically using question-specific rubrics. Their methods, including Complete Rubric Evaluation (CRE) and Ensemble Method Evaluation (EME), achieve high correlation (e.g., Pearson r=0.912 for CRE on OOP) with human expert grades and provide detailed, criterion-level feedback, outperforming traditional and general LLM evaluation approaches.
This research demonstrates that explicitly training large language models on a diverse collection of natural language-prompted tasks enables strong zero-shot generalization. The 11B parameter T0 model, developed through this approach, achieved performance comparable to or superior to a 175B parameter GPT-3 on several traditional NLP benchmarks and novel BIG-bench tasks, while also enhancing robustness to prompt variations.
461
The escalating volume of academic research, coupled with a shortage of qualified reviewers, necessitates innovative approaches to peer review. In this work, we propose: 1. ReviewEval, a comprehensive evaluation framework for AI-generated reviews that measures alignment with human assessments, verifies factual accuracy, assesses analytical depth, identifies degree of constructiveness and adherence to reviewer guidelines; and 2. ReviewAgent, an LLM-based review generation agent featuring a novel alignment mechanism to tailor feedback to target conferences and journals, along with a self-refinement loop that iteratively optimizes its intermediate outputs and an external improvement loop using ReviewEval to improve upon the final reviews. ReviewAgent improves actionable insights by 6.78% and 47.62% over existing AI baselines and expert reviews respectively. Further, it boosts analytical depth by 3.97% and 12.73%, enhances adherence to guidelines by 10.11% and 47.26% respectively. This paper establishes essential metrics for AIbased peer review and substantially enhances the reliability and impact of AI-generated reviews in academic research.
1
We introduce Amazon Berkeley Objects (ABO), a new large-scale dataset designed to help bridge the gap between real and virtual 3D worlds. ABO contains product catalog images, metadata, and artist-created 3D models with complex geometries and physically-based materials that correspond to real, household objects. We derive challenging benchmarks that exploit the unique properties of ABO and measure the current limits of the state-of-the-art on three open problems for real-world 3D object understanding: single-view 3D reconstruction, material estimation, and cross-domain multi-view object retrieval.
CogniPlan presents an uncertainty-guided path planning framework that uses a conditional generative model to predict multiple plausible environmental layouts from partial observations. This approach reduces travel length by 7.0% for autonomous exploration and 12.5% for point-goal navigation compared to strong baselines, exhibiting robust performance in simulated and real-world environments.
Our interest is in the design of software systems involving a human-expert interacting -- using natural language -- with a large language model (LLM) on data analysis tasks. For complex problems, it is possible that LLMs can harness human expertise and creativity to find solutions that were otherwise elusive. On one level, this interaction takes place through multiple turns of prompts from the human and responses from the LLM. Here we investigate a more structured approach based on an abstract protocol described in [3] for interaction between agents. The protocol is motivated by a notion of "two-way intelligibility" and is modelled by a pair of communicating finite-state machines. We provide an implementation of the protocol, and provide empirical evidence of using the implementation to mediate interactions between an LLM and a human-agent in two areas of scientific interest (radiology and drug design). We conduct controlled experiments with a human proxy (a database), and uncontrolled experiments with human subjects. The results provide evidence in support of the protocol's capability of capturing one- and two-way intelligibility in human-LLM interaction; and for the utility of two-way intelligibility in the design of human-machine systems.
Researchers at BITS Pilani, Georgia Institute of Technology, Stanford University, and Emory University developed an inquiry-based framework using a 20 Questions game to reveal implicit geographic biases in Large Language Models. The study found consistent lower performance and less efficient reasoning for entities from the Global South and East compared to the Global North and West, even with unlimited turns, a disparity not fully explained by entity popularity or pre-training data frequency.
Researchers at Birla AI Labs introduce "activation transplantation," a causal intervention method to manipulate hidden states in Time Series Foundation Models (TSFMs), enabling the simulation of rare events like market crashes. This approach demonstrates that TSFMs internalize high-level semantic concepts, allowing deterministic control over forecasts and revealing a nuanced, quantitatively encoded understanding of event severity.
3
PromptSource is a system for creating, sharing, and using natural language prompts. Prompts are functions that map an example from a dataset to a natural language input and target output. Using prompts to train and query language models is an emerging area in NLP that requires new tools that let users develop and refine these prompts collaboratively. PromptSource addresses the emergent challenges in this new setting with (1) a templating language for defining data-linked prompts, (2) an interface that lets users quickly iterate on prompt development by observing outputs of their prompts on many examples, and (3) a community-driven set of guidelines for contributing new prompts to a common pool. Over 2,000 prompts for roughly 170 datasets are already available in PromptSource. PromptSource is available at this https URL.
Researchers from Max Planck Institute and ETH Zürich introduce the task of logical fallacy detection in natural language, constructing two novel datasets and proposing a structure-aware classification model. Their model achieved a 5.46% F1 score improvement over the best baseline on the LOGIC dataset and maintained a 5.66% F1 improvement on the challenging LOGICCLIMATE dataset for climate change claims, indicating enhanced logical reasoning.
17
In this work we study Weakly Supervised Spatio-Temporal Video Grounding (WSTVG), a challenging task of localizing subjects spatio-temporally in videos using only textual queries and no bounding box supervision. Inspired by recent advances in vision-language foundation models, we investigate their utility for WSTVG, leveraging their zero-shot grounding capabilities. However, we find that a simple adaptation lacks essential spatio-temporal grounding abilities. To bridge this gap, we introduce Tubelet Referral Grounding (TRG), which connects textual queries to tubelets to enable spatio-temporal predictions. Despite its promise, TRG struggles with compositional action understanding and dense scene scenarios. To address these limitations, we propose STPro, a novel progressive learning framework with two key modules: (1) Sub-Action Temporal Curriculum Learning (SA-TCL), which incrementally builds compositional action understanding, and (2) Congestion-Guided Spatial Curriculum Learning (CG-SCL), which adapts the model to complex scenes by spatially increasing task difficulty. STPro achieves state-of-the-art results on three benchmark datasets, with improvements of 1.0% on VidSTG-Declarative and 3.0% on HCSTVG-v1.
· +2
Exploring and quantifying semantic relatedness is central to representing language and holds significant implications across various NLP tasks. While earlier NLP research primarily focused on semantic similarity, often within the English language context, we instead investigate the broader phenomenon of semantic relatedness. In this paper, we present \textit{SemRel}, a new semantic relatedness dataset collection annotated by native speakers across 13 languages: \textit{Afrikaans, Algerian Arabic, Amharic, English, Hausa, Hindi, Indonesian, Kinyarwanda, Marathi, Moroccan Arabic, Modern Standard Arabic, Spanish,} and \textit{Telugu}. These languages originate from five distinct language families and are predominantly spoken in Africa and Asia -- regions characterised by a relatively limited availability of NLP resources. Each instance in the SemRel datasets is a sentence pair associated with a score that represents the degree of semantic textual relatedness between the two sentences. The scores are obtained using a comparative annotation framework. We describe the data collection and annotation processes, challenges when building the datasets, baseline experiments, and their impact and utility in NLP.
When physical testbeds are out of reach for evaluating a networked system, we frequently turn to simulation. In today's datacenter networks, bottlenecks are rarely at the network protocol level, but instead in end-host software or hardware components, thus current protocol-level simulations are inadequate means of evaluation. End-to-end simulations covering these components on the other hand, simply cannot achieve the required scale with feasible simulation performance and computational resources. In this paper, we address this with SplitSim, a simulation framework for end-to-end evaluation for large-scale network and distributed systems. To this end, SplitSim builds on prior work on modular end-to-end simulations and combines this with key elements to achieve scalability. First, mixed fidelity simulations judiciously reduce detail in simulation of parts of the system where this can be tolerated, while retaining the necessary detail elsewhere. SplitSim then parallelizes bottleneck simulators by decomposing them into multiple parallel but synchronized processes. Next, SplitSim provides a profiler to help users understand simulation performance and where the bottlenecks are, so users can adjust the configuration. Finally SplitSim provides abstractions to make it easy for users to build complex large-scale simulations. Our evaluation demonstrates SplitSim in multiple large-scale case studies.
There has been a growing interest in developing multimodal machine translation (MMT) systems that enhance neural machine translation (NMT) with visual knowledge. This problem setup involves using images as auxiliary information during training, and more recently, eliminating their use during inference. Towards this end, previous works face a challenge in training powerful MMT models from scratch due to the scarcity of annotated multilingual vision-language data, especially for low-resource languages. Simultaneously, there has been an influx of multilingual pre-trained models for NMT and multimodal pre-trained models for vision-language tasks, primarily in English, which have shown exceptional generalisation ability. However, these are not directly applicable to MMT since they do not provide aligned multimodal multilingual features for generative tasks. To alleviate this issue, instead of designing complex modules for MMT, we propose CLIPTrans, which simply adapts the independently pre-trained multimodal M-CLIP and the multilingual mBART. In order to align their embedding spaces, mBART is conditioned on the M-CLIP features by a prefix sequence generated through a lightweight mapping network. We train this in a two-stage pipeline which warms up the model with image captioning before the actual translation task. Through experiments, we demonstrate the merits of this framework and consequently push forward the state-of-the-art across standard benchmarks by an average of +2.67 BLEU. The code can be found at this http URL.
Neural network classifiers trained on datasets with uneven group representation often inherit class biases and learn spurious correlations. These models may perform well on average but consistently fail on atypical groups. For example, in hair color classification, datasets may over-represent females with blond hair, reinforcing stereotypes. Although various algorithmic and data-centric methods have been proposed to address such biases, they often require retraining or significant compute. In this work, we propose a cheap, training-free method inspired by steering vectors used to edit behaviors in large language models. We compute the difference in mean activations between majority and minority groups to define a "bias vector," which we subtract from the model's residual stream. This leads to reduced classification bias and improved worst-group accuracy. We explore multiple strategies for extracting and applying these vectors in transformer-like classifiers, showing that steering vectors, traditionally used in generative models, can also be effective in classification. More broadly, we showcase an extremely cheap, inference time, training free method to mitigate bias in classification models.
In this paper, we present the VMSE U-Net and VM-Unet CBAM+ model, two cutting-edge deep learning architectures designed to enhance medical image segmentation. Our approach integrates Squeeze-and-Excitation (SE) and Convolutional Block Attention Module (CBAM) techniques into the traditional VM U-Net framework, significantly improving segmentation accuracy, feature localization, and computational efficiency. Both models show superior performance compared to the baseline VM-Unet across multiple datasets. Notably, VMSEUnet achieves the highest accuracy, IoU, precision, and recall while maintaining low loss values. It also exhibits exceptional computational efficiency with faster inference times and lower memory usage on both GPU and CPU. Overall, the study suggests that the enhanced architecture VMSE-Unet is a valuable tool for medical image analysis. These findings highlight its potential for real-world clinical applications, emphasizing the importance of further research to optimize accuracy, robustness, and computational efficiency.
With advancements in computing and communication technologies, the Internet of Things (IoT) has seen significant growth. IoT devices typically collect data from various sensors, such as temperature, humidity, and energy meters. Much of this data is temporal in nature. Traditionally, data from IoT devices is centralized for analysis, but this approach introduces delays and increased communication costs. Federated learning (FL) has emerged as an effective alternative, allowing for model training across distributed devices without the need to centralize data. In many applications, such as smart home energy and environmental monitoring, the data collected by IoT devices across different locations can exhibit significant variation in trends and seasonal patterns. Accurately forecasting such non-stationary, non-linear time-series data is crucial for applications like energy consumption estimation and weather forecasting. However, these data variations can severely impact prediction accuracy. The key contributions of this paper are: (1) Investigating how non-linear, non-stationary time-series data distributions, like generalized extreme value (gen-extreme) and log norm distributions, affect FL performance. (2) Analyzing how different detrending techniques for non-linear time-series data influence the forecasting model's performance in a FL setup. We generated several synthetic time-series datasets using non-linear data distributions and trained an LSTM-based forecasting model using both centralized and FL approaches. Additionally, we evaluated the impact of detrending on real-world datasets with non-linear time-series data distributions. Our experimental results show that: (1) FL performs worse than centralized approaches when dealing with non-linear data distributions. (2) The use of appropriate detrending techniques improves FL performance, reducing loss across different data distributions.
In this paper, we present GPLAN, software aimed at constructing dimensioned floorplan layouts based on graph-theoretical and optimization techniques. GPLAN takes user requirements as input in the following two forms: i. Adjacency graph: It allows user to draw an adjacency graph on a GUI(graphical user interface) corresponding to which GPLAN produces a set of dimensioned floorplans with a rectangular boundary, where each floorplan is topologically distinct from others. ii. Dimensionless layout: Here, user can draw any layout with rectangular or non-rectangular boundary on a GUI and GPLAN transforms it into a dimensioned floorplan while preserving adjacencies, positions, shapes of the rooms. The above approaches represent different ways of inserting adjacencies and GPLAN generate dimensioned floorplans corresponding to the given adjacencies. The larger aim is to provide alternative platforms to user for producing dimensioned floorplans for all given (architectural) constraints, which can be further refined by architects.
Neural networks often contain polysemantic neurons that respond to multiple, sometimes unrelated, features, complicating mechanistic interpretability. We introduce the Polysemanticity Index (PSI), a null-calibrated metric that quantifies when a neuron's top activations decompose into semantically distinct clusters. PSI multiplies three independently calibrated components: geometric cluster quality (S), alignment to labeled categories (Q), and open-vocabulary semantic distinctness via CLIP (D). On a pretrained ResNet-50 evaluated with Tiny-ImageNet images, PSI identifies neurons whose activation sets split into coherent, nameable prototypes, and reveals strong depth trends: later layers exhibit substantially higher PSI than earlier layers. We validate our approach with robustness checks (varying hyperparameters, random seeds, and cross-encoder text heads), breadth analyses (comparing class-only vs. open-vocabulary concepts), and causal patch-swap interventions. In particular, aligned patch replacements increase target-neuron activation significantly more than non-aligned, random, shuffled-position, or ablate-elsewhere controls. PSI thus offers a principled and practical lever for discovering, quantifying, and studying polysemantic units in neural networks.
Vision language models (VLMs) have shown strong zero-shot generalization across various tasks, especially when integrated with large language models (LLMs). However, their ability to comprehend rhetorical and persuasive visual media, such as advertisements, remains understudied. Ads often employ atypical imagery, using surprising object juxtapositions to convey shared properties. For example, Fig. 1 (e) shows a beer with a feather-like texture. This requires advanced reasoning to deduce that this atypical representation signifies the beer's lightness. We introduce three novel tasks, Multi-label Atypicality Classification, Atypicality Statement Retrieval, and Aypical Object Recognition, to benchmark VLMs' understanding of atypicality in persuasive images. We evaluate how well VLMs use atypicality to infer an ad's message and test their reasoning abilities by employing semantically challenging negatives. Finally, we pioneer atypicality-aware verbalization by extracting comprehensive image descriptions sensitive to atypical elements. Our findings reveal that: (1) VLMs lack advanced reasoning capabilities compared to LLMs; (2) simple, effective strategies can extract atypicality-aware information, leading to comprehensive image verbalization; (3) atypicality aids persuasive advertisement understanding. Code and data will be made available.
1
There are no more papers matching your filters at the moment.