SK Telecom
·
Mobility remains a significant challenge for the 2.2 billion people worldwide affected by blindness and low vision (BLV), with 7% of visually impaired individuals experiencing falls at least once a month. While recent advances in Multimodal Large Language Models (MLLMs) offer promising opportunities for BLV assistance, their development has been hindered by limited datasets. This limitation stems from the fact that BLV-aware annotation requires specialized domain knowledge and intensive labor. To address this gap, we introduce GuideDog, a novel accessibility-aware guide dataset containing 22K image-description pairs (including 2K human-annotated pairs) that capture diverse real-world scenes from a pedestrian's viewpoint. Our approach shifts the annotation burden from generation to verification through a collaborative human-AI framework grounded in established accessibility standards, significantly improving efficiency while maintaining high-quality annotations. We also develop GuideDogQA, a subset of 818 samples featuring multiple-choice questions designed to evaluate fine-grained visual perception capabilities, specifically object recognition and relative depth perception. Our experimental results highlight the importance of accurate spatial understanding for effective BLV guidance. GuideDog and GuideDogQA will advance research in MLLM-based assistive technologies for BLV individuals while contributing to broader applications in understanding egocentric scenes for robotics and augmented reality. The code and dataset will be publicly available.
Researchers at SK Telecom developed VITS2, an improved single-stage text-to-speech model that enhances speech naturalness to a MOS of 4.47 and improves synthesis speed to 97.25x real-time. This model also substantially reduces the reliance on phoneme conversion, achieving comparable intelligibility with normalized text inputs.
536
Understanding and reasoning over text within visual contexts poses a significant challenge for Vision-Language Models (VLMs), given the complexity and diversity of real-world scenarios. To address this challenge, text-rich Visual Question Answering (VQA) datasets and benchmarks have emerged for high-resource languages like English. However, a critical gap persists for low-resource languages such as Korean, where the lack of comprehensive benchmarks hinders robust model evaluation and comparison. To bridge this gap, we introduce KRETA, a benchmark for Korean Reading and rEasoning in Text-rich VQA Attuned to diverse visual contexts. KRETA facilitates an in-depth evaluation of both visual text understanding and reasoning capabilities, while also supporting a multifaceted assessment across 15 domains and 26 image types. Additionally, we introduce a semi-automated VQA generation pipeline specifically optimized for text-rich settings, leveraging refined stepwise image decomposition and a rigorous seven-metric evaluation protocol to ensure data quality. While KRETA is tailored for Korean, we hope our adaptable and extensible pipeline will facilitate the development of similar benchmarks in other languages, thereby accelerating multilingual VLM research. The code and dataset for KRETA are available at this https URL.
7
As recent text-to-speech (TTS) systems have been rapidly improved in speech quality and generation speed, many researchers now focus on a more challenging issue: expressive TTS. To control speaking styles, existing expressive TTS models use categorical style index or reference speech as style input. In this work, we propose StyleTagging-TTS (ST-TTS), a novel expressive TTS model that utilizes a style tag written in natural language. Using a style-tagged TTS dataset and a pre-trained language model, we modeled the relationship between linguistic embedding and speaking style domain, which enables our model to work even with style tags unseen during training. As style tag is written in natural language, it can control speaking style in a more intuitive, interpretable, and scalable way compared with style index or reference speech. In addition, in terms of model architecture, we propose an efficient non-autoregressive (NAR) TTS architecture with single-stage training. The experimental result shows that ST-TTS outperforms the existing expressive TTS model, Tacotron2-GST in speech quality and expressiveness.
Korean researchers develop FeRG-LLM, a locally-deployable framework based on fine-tuned Llama 3.1 8B that automates feature engineering for tabular data through two-stage dialogue and direct preference optimization, matching the performance of 70B models while enabling secure, on-premise deployment.
A well-formulated benchmark plays a critical role in spurring advancements in the natural language processing (NLP) field, as it allows objective and precise evaluation of diverse models. As modern language models (LMs) have become more elaborate and sophisticated, more difficult benchmarks that require linguistic knowledge and reasoning have been proposed. However, most of these benchmarks only support English, and great effort is necessary to construct benchmarks for other low resource languages. To this end, we propose a new benchmark named Korean balanced evaluation of significant tasks (KoBEST), which consists of five Korean-language downstream tasks. Professional Korean linguists designed the tasks that require advanced Korean linguistic knowledge. Moreover, our data is purely annotated by humans and thoroughly reviewed to guarantee high data quality. We also provide baseline models and human performance results. Our dataset is available on the Huggingface.
Video outpainting presents a unique challenge of extending the borders while maintaining consistency with the given content. In this paper, we suggest the use of video inpainting models that excel in object flow learning and reconstruction in outpainting rather than solely generating the background as in existing methods. However, directly applying or fine-tuning inpainting models to outpainting has shown to be ineffective, often leading to blurry results. Our extensive experiments on discriminator designs reveal that a critical component missing in the outpainting fine-tuning process is a discriminator capable of effectively assessing the perceptual quality of the extended areas. To tackle this limitation, we differentiate the objectives of adversarial training into global and local goals and introduce a hierarchical discriminator that meets both objectives. Additionally, we develop a specialized outpainting loss function that leverages both local and global features of the discriminator. Fine-tuning on this adversarial loss function enhances the generator's ability to produce both visually appealing and globally coherent outpainted scenes. Our proposed method outperforms state-of-the-art methods both quantitatively and qualitatively. Supplementary materials including the demo video and the code are available in SigPort.
3
In the field of personalized image generation, the ability to create images preserving concepts has significantly improved. Creating an image that naturally integrates multiple concepts in a cohesive and visually appealing composition can indeed be challenging. This paper introduces "InstantFamily," an approach that employs a novel masked cross-attention mechanism and a multimodal embedding stack to achieve zero-shot multi-ID image generation. Our method effectively preserves ID as it utilizes global and local features from a pre-trained face recognition model integrated with text conditions. Additionally, our masked cross-attention mechanism enables the precise control of multi-ID and composition in the generated images. We demonstrate the effectiveness of InstantFamily through experiments showing its dominance in generating images with multi-ID, while resolving well-known multi-ID generation problems. Additionally, our model achieves state-of-the-art performance in both single-ID and multi-ID preservation. Furthermore, our model exhibits remarkable scalability with a greater number of ID preservation than it was originally trained with.
Speech tokenization is crucial in digital speech processing, converting continuous speech signals into discrete units for various computational tasks. This paper introduces a novel speech tokenizer with broad applicability across downstream tasks. While recent advances in residual vector quantization (RVQ) have incorporated semantic elements, they often neglect critical acoustic features. We propose an advanced approach that simultaneously encodes both linguistic and acoustic information, preserving prosodic and emotional content. Our method significantly enhances speech representation fidelity across diverse applications. Empirical evaluations demonstrate its effectiveness in speech coding, voice conversion, emotion recognition, and multimodal language modeling, without requiring additional training. This versatility underscores its potential as a key tool for advancing AI-driven speech processing.
Most of existing audio fingerprinting systems have limitations to be used for high-specific audio retrieval at scale. In this work, we generate a low-dimensional representation from a short unit segment of audio, and couple this fingerprint with a fast maximum inner-product search. To this end, we present a contrastive learning framework that derives from the segment-level search objective. Each update in training uses a batch consisting of a set of pseudo labels, randomly selected original samples, and their augmented replicas. These replicas can simulate the degrading effects on original audio signals by applying small time offsets and various types of distortions, such as background noise and room/microphone impulse responses. In the segment-level search task, where the conventional audio fingerprinting systems used to fail, our system using 10x smaller storage has shown promising results. Our code and dataset are available at \url{this https URL}.
1
This paper presents a method for building a personalized open-domain dialogue system to address the WWH (WHAT, WHEN, and HOW) problem for natural response generation in a commercial setting, where personalized dialogue responses are heavily interleaved with casual response turns. The proposed approach involves weighted dataset blending, negative persona information augmentation methods, and the design of personalized conversation datasets to address the challenges of WWH in personalized, open-domain dialogue systems. Our work effectively balances dialogue fluency and tendency to ground, while also introducing a response-type label to improve the controllability and explainability of the grounded responses. The combination of these methods leads to more fluent conversations, as evidenced by subjective human evaluations as well as objective evaluations.
Autistic students often face challenges in social interaction, which can hinder their educational and personal development. This study introduces Echo-Teddy, a Large Language Model (LLM)-based social robot designed to support autistic students in developing social and communication skills. Unlike previous chatbot-based solutions, Echo-Teddy leverages advanced LLM capabilities to provide more natural and adaptive interactions. The research addresses two key questions: (1) What are the design principles and initial prototype characteristics of an effective LLM-based social robot for autistic students? (2) What improvements can be made based on developer reflection-on-action and expert interviews? The study employed a mixed-methods approach, combining prototype development with qualitative analysis of developer reflections and expert interviews. Key design principles identified include customizability, ethical considerations, and age-appropriate interactions. The initial prototype, built on a Raspberry Pi platform, features custom speech components and basic motor functions. Evaluation of the prototype revealed potential improvements in areas such as user interface, educational value, and practical implementation in educational settings. This research contributes to the growing field of AI-assisted special education by demonstrating the potential of LLM-based social robots in supporting autistic students. The findings provide valuable insights for future developments in accessible and effective social support tools for special education.
In goal-oriented dialog systems, belief trackers estimate the probability distribution of slot-values at every dialog turn. Previous neural approaches have modeled domain- and slot-dependent belief trackers, and have difficulty in adding new slot-values, resulting in lack of flexibility of domain ontology configurations. In this paper, we propose a new approach to universal and scalable belief tracker, called slot-utterance matching belief tracker (SUMBT). The model learns the relations between domain-slot-types and slot-values appearing in utterances through attention mechanisms based on contextual semantic vectors. Furthermore, the model predicts slot-value labels in a non-parametric way. From our experiments on two dialog corpora, WOZ 2.0 and MultiWOZ, the proposed model showed performance improvement in comparison with slot-dependent methods and achieved the state-of-the-art joint accuracy.
90
Pre-training the embedding of a location generated from human mobility data has become a popular method for location based services. In practice, modeling the location embedding is too expensive, due to the large number of locations to be trained in situations with fine-grained resolution or extensive target regions. Previous studies have handled less than ten thousand distinct locations, which is insufficient in the real-world applications. To tackle this problem, we propose a Geo-Tokenizer, designed to efficiently reduce the number of locations to be trained by representing a location as a combination of several grids at different scales. In the Geo-Tokenizer, a grid at a larger scale shares the common set of grids at smaller scales, which is a key factor in reducing the size of the location vocabulary. The sequences of locations preprocessed with the Geo-Tokenizer are utilized by a causal location embedding model to capture the temporal dependencies of locations. This model dynamically calculates the embedding vector of a target location, which varies depending on its trajectory. In addition, to efficiently pre-train the location embedding model, we propose the Hierarchical Auto-regressive Location Model objective to effectively train decomposed locations in the Geo-Tokenizer. We conducted experiments on two real-world user trajectory datasets using our pre-trained location model. The experimental results show that our model significantly improves the performance of downstream tasks with fewer model parameters compared to existing location embedding methods.
Partial Adaptation (PDA) addresses a practical scenario in which the target domain contains only a subset of classes in the source domain. While PDA should take into account both class-level and sample-level to mitigate negative transfer, current approaches mostly rely on only one of them. In this paper, we propose a novel approach to fully exploit multi-level associations that can arise in PDA. Our Associative Partial Domain Adaptation (APDA) utilizes intra-domain association to actively select out non-trivial anomaly samples in each source-private class that sample-level weighting cannot handle. Additionally, our method considers inter-domain association to encourage positive transfer by mapping between nearby target samples and source samples with high label-commonness. For this, we exploit feature propagation in a proposed label space consisting of source ground-truth labels and target probabilistic labels. We further propose a geometric guidance loss based on the label commonness of each source class to encourage positive transfer. Our APDA consistently achieves state-of-the-art performance across public datasets.
With the increasing importance of video data in real-world applications, there is a rising need for efficient object detection methods that utilize temporal information. While existing video object detection (VOD) techniques employ various strategies to address this challenge, they typically depend on locally adjacent frames or randomly sampled images within a clip. Although recent Transformer-based VOD methods have shown promising results, their reliance on multiple inputs and additional network complexity to incorporate temporal information limits their practical applicability. In this paper, we propose a novel approach to single image object detection, called Context Enhanced TRansformer (CETR), by incorporating temporal context into DETR using a newly designed memory module. To efficiently store temporal information, we construct a class-wise memory that collects contextual information across data. Additionally, we present a classification-based sampling technique to selectively utilize the relevant memory for the current image. In the testing, We introduce a test-time memory adaptation method that updates individual memory functions by considering the test distribution. Experiments with CityCam and ImageNet VID datasets exhibit the efficiency of the framework on various video systems. The project page and code will be made available at: this https URL.
We propose a novel memory network model named Read-Write Memory Network (RWMN) to perform question and answering tasks for large-scale, multimodal movie story understanding. The key focus of our RWMN model is to design the read network and the write network that consist of multiple convolutional layers, which enable memory read and write operations to have high capacity and flexibility. While existing memory-augmented network models treat each memory slot as an independent block, our use of multi-layered CNNs allows the model to read and write sequential memory cells as chunks, which is more reasonable to represent a sequential story because adjacent memory blocks often have strong correlations. For evaluation, we apply our model to all the six tasks of the MovieQA benchmark, and achieve the best accuracies on several tasks, especially on the visual QA task. Our model shows a potential to better understand not only the content in the story, but also more abstract information, such as relationships between characters and the reasons for their actions.
Domain adaptation assumes that samples from source and target domains are freely accessible during a training phase. However, such an assumption is rarely plausible in the real-world and possibly causes data-privacy issues, especially when the label of the source domain can be a sensitive attribute as an identifier. To avoid accessing source data that may contain sensitive information, we introduce Source data-Free Domain Adaptation (SFDA). Our key idea is to leverage a pre-trained model from the source domain and progressively update the target model in a self-learning manner. We observe that target samples with lower self-entropy measured by the pre-trained source model are more likely to be classified correctly. From this, we select the reliable samples with the self-entropy criterion and define these as class prototypes. We then assign pseudo labels for every target sample based on the similarity score with class prototypes. Furthermore, to reduce the uncertainty from the pseudo labeling process, we propose set-to-set distance-based filtering which does not require any tunable hyperparameters. Finally, we train the target model with the filtered pseudo labels with regularization from the pre-trained source model. Surprisingly, without direct usage of labeled source samples, our PrDA outperforms conventional domain adaptation methods on benchmark datasets. Our code is publicly available at this https URL
57
Large-scale systems with arrays of solid state disks (SSDs) have become increasingly common in many computing segments. To make such systems resilient, we can adopt erasure coding such as Reed-Solomon (RS) code as an alternative to replication because erasure coding can offer a significantly lower storage cost than replication. To understand the impact of using erasure coding on system performance and other system aspects such as CPU utilization and network traffic, we build a storage cluster consisting of approximately one hundred processor cores with more than fifty high-performance SSDs, and evaluate the cluster with a popular open-source distributed parallel file system, Ceph. Then we analyze behaviors of systems adopting erasure coding from the following five viewpoints, compared with those of systems using replication: (1) storage system I/O performance; (2) computing and software overheads; (3) I/O amplification; (4) network traffic among storage nodes; (5) the impact of physical data layout on performance of RS-coded SSD arrays. For all these analyses, we examine two representative RS configurations, which are used by Google and Facebook file systems, and compare them with triple replication that a typical parallel file system employs as a default fault tolerance mechanism. Lastly, we collect 54 block-level traces from the cluster and make them available for other researchers.
In video super-resolution, the spatio-temporal coherence between, and among the frames must be exploited appropriately for accurate prediction of the high resolution frames. Although 2D convolutional neural networks (CNNs) are powerful in modelling images, 3D-CNNs are more suitable for spatio-temporal feature extraction as they can preserve temporal information. To this end, we propose an effective 3D-CNN for video super-resolution, called the 3DSRnet that does not require motion alignment as preprocessing. Our 3DSRnet maintains the temporal depth of spatio-temporal feature maps to maximally capture the temporally nonlinear characteristics between low and high resolution frames, and adopts residual learning in conjunction with the sub-pixel outputs. It outperforms the most state-of-the-art method with average 0.45 and 0.36 dB higher in PSNR for scales 3 and 4, respectively, in the Vidset4 benchmark. Our 3DSRnet first deals with the performance drop due to scene change, which is important in practice but has not been previously considered.
There are no more papers matching your filters at the moment.