Institute for Infocomm Research
This study addresses the challenge of extending Large Language Models (LLMs) to non-English languages that use non-Roman scripts. We propose an approach that utilizes the romanized form of text as an interface for LLMs, hypothesizing that its frequent informal use and shared tokens with English enhance cross-lingual alignment. Our approach involves the continual pretraining of an English LLM like Llama 2 on romanized text of non-English, non-Roman script languages, followed by instruction tuning on romanized data. The results indicate that romanized text not only reduces token fertility by 2x-4x but also matches or outperforms native script representation across various NLU, NLG, and MT tasks. Moreover, the embeddings computed on romanized text exhibit closer alignment with their English translations than those from the native script. Our approach presents a promising direction for leveraging the power of English LLMs in languages traditionally underrepresented in NLP. Our code is available on this https URL.
The growing need for psychological support due to increasing pressures has exposed the scarcity of relevant datasets, particularly in non-English languages. To address this, we propose a framework that leverages limited real-world data and expert knowledge to fine-tune two large language models: Dialog Generator and Dialog Modifier. The Generator creates large-scale psychological counseling dialogues based on predefined paths, which guide system response strategies and user interactions, forming the basis for effective support. The Modifier refines these dialogues to align with real-world data quality. Through both automated and manual review, we construct the Chinese Psychological support Dialogue Dataset (CPsDD), containing 68K dialogues across 13 groups, 16 psychological problems, 13 causes, and 12 support focuses. Additionally, we introduce the Comprehensive Agent Dialogue Support System (CADSS), where a Profiler analyzes user characteristics, a Summarizer condenses dialogue history, a Planner selects strategies, and a Supporter generates empathetic responses. The experimental results of the Strategy Prediction and Emotional Support Conversation (ESC) tasks demonstrate that CADSS achieves state-of-the-art performance on both CPsDD and ESConv datasets.
The data privacy constraint in online continual learning (OCL), where the data can be seen only once, complicates the catastrophic forgetting problem in streaming data. A common approach applied by the current SOTAs in OCL is with the use of memory saving exemplars or features from previous classes to be replayed in the current task. On the other hand, the prompt-based approach performs excellently in continual learning but with the cost of a growing number of trainable parameters. The first approach may not be applicable in practice due to data openness policy, while the second approach has the issue of throughput associated with the streaming data. In this study, we propose a novel prompt-based method for online continual learning that includes 4 main components: (1) single light-weight prompt generator as a general knowledge, (2) trainable scaler-and-shifter as specific knowledge, (3) pre-trained model (PTM) generalization preserving, and (4) hard-soft updates mechanism. Our proposed method achieves significantly higher performance than the current SOTAs in CIFAR100, ImageNet-R, ImageNet-A, and CUB dataset. Our complexity analysis shows that our method requires a relatively smaller number of parameters and achieves moderate training time, inference time, and throughput. For further study, the source code of our method is available at this https URL.
Edge General Intelligence (EGI) represents a transformative evolution of edge computing, where distributed agents possess the capability to perceive, reason, and act autonomously across diverse, dynamic environments. Central to this vision are world models, which act as proactive internal simulators that not only predict but also actively imagine future trajectories, reason under uncertainty, and plan multi-step actions with foresight. This proactive nature allows agents to anticipate potential outcomes and optimize decisions ahead of real-world interactions. While prior works in robotics and gaming have showcased the potential of world models, their integration into the wireless edge for EGI remains underexplored. This survey bridges this gap by offering a comprehensive analysis of how world models can empower agentic artificial intelligence (AI) systems at the edge. We first examine the architectural foundations of world models, including latent representation learning, dynamics modeling, and imagination-based planning. Building on these core capabilities, we illustrate their proactive applications across EGI scenarios such as vehicular networks, unmanned aerial vehicle (UAV) networks, the Internet of Things (IoT) systems, and network functions virtualization, thereby highlighting how they can enhance optimization under latency, energy, and privacy constraints. We then explore their synergy with foundation models and digital twins, positioning world models as the cognitive backbone of EGI. Finally, we highlight open challenges, such as safety guarantees, efficient training, and constrained deployment, and outline future research directions. This survey provides both a conceptual foundation and a practical roadmap for realizing the next generation of intelligent, autonomous edge systems.
Learning-to-Defer (L2D) enables hybrid decision-making by routing inputs either to a predictor or to external experts. While promising, L2D is highly vulnerable to adversarial perturbations, which can not only flip predictions but also manipulate deferral decisions. Prior robustness analyses focus solely on two-stage settings, leaving open the end-to-end (one-stage) case where predictor and allocation are trained jointly. We introduce the first framework for adversarial robustness in one-stage L2D, covering both classification and regression. Our approach formalizes attacks, proposes cost-sensitive adversarial surrogate losses, and establishes theoretical guarantees including H\mathcal{H}, (R,F)(\mathcal{R }, \mathcal{F}), and Bayes consistency. Experiments on benchmark datasets confirm that our methods improve robustness against untargeted and targeted attacks while preserving clean performance.
A comprehensive survey maps the landscape of Video Scene Parsing (VSP), reviewing advancements across tasks like semantic, instance, panoptic, and open-vocabulary segmentation, from traditional to Transformer-based deep learning methods. It synthesizes current methodologies, datasets, and challenges, including the critical need for temporal consistency and efficiency, while outlining future research directions.
Large Language Models (LLMs) have recently demonstrated impressive capabilities in natural language processing due to their strong generalization and sequence modeling capabilities. However, their direct application to time series forecasting remains challenging due to two fundamental issues: the inherent heterogeneity of temporal patterns and the modality gap between continuous numerical signals and discrete language representations. In this work, we propose TALON, a unified framework that enhances LLM-based forecasting by modeling temporal heterogeneity and enforcing semantic alignment. Specifically, we design a Heterogeneous Temporal Encoder that partitions multivariate time series into structurally coherent segments, enabling localized expert modeling across diverse temporal patterns. To bridge the modality gap, we introduce a Semantic Alignment Module that aligns temporal features with LLM-compatible representations, enabling effective integration of time series into language-based models while eliminating the need for handcrafted prompts during inference. Extensive experiments on seven real-world benchmarks demonstrate that TALON achieves superior performance across all datasets, with average MSE improvements of up to 11\% over recent state-of-the-art methods. These results underscore the effectiveness of incorporating both pattern-aware and semantic-aware designs when adapting LLMs for time series forecasting. The code is available at: this https URL.
In collaborative data sharing and machine learning, multiple parties aggregate their data resources to train a machine learning model with better model performance. However, as the parties incur data collection costs, they are only willing to do so when guaranteed incentives, such as fairness and individual rationality. Existing frameworks assume that all parties join the collaboration simultaneously, which does not hold in many real-world scenarios. Due to the long processing time for data cleaning, difficulty in overcoming legal barriers, or unawareness, the parties may join the collaboration at different times. In this work, we propose the following perspective: As a party who joins earlier incurs higher risk and encourages the contribution from other wait-and-see parties, that party should receive a reward of higher value for sharing data earlier. To this end, we propose a fair and time-aware data sharing framework, including novel time-aware incentives. We develop new methods for deciding reward values to satisfy these incentives. We further illustrate how to generate model rewards that realize the reward values and empirically demonstrate the properties of our methods on synthetic and real-world datasets.
We present MERaLiON-SER, a robust speech emotion recognition model designed for English and Southeast Asian languages. The model is trained using a hybrid objective combining weighted categorical cross-entropy and Concordance Correlation Coefficient (CCC) losses for joint discrete and dimensional emotion modelling. This dual approach enables the model to capture both the distinct categories of emotion (like happy or angry) and the fine-grained, such as arousal (intensity), valence (positivity/negativity), and dominance (sense of control), leading to a more comprehensive and robust representation of human affect. Extensive evaluations across multilingual Singaporean languages (English, Chinese, Malay, and Tamil ) and other public benchmarks show that MERaLiON-SER consistently surpasses both open-source speech encoders and large Audio-LLMs. These results underscore the importance of specialised speech-only models for accurate paralinguistic understanding and cross-lingual generalisation. Furthermore, the proposed framework provides a foundation for integrating emotion-aware perception into future agentic audio systems, enabling more empathetic and contextually adaptive multimodal reasoning.
Researchers at the Institute for Infocomm Research and collaborators developed an efficient GAN-based anomaly detection method that leverages encoder-equipped GAN architectures, achieving up to 950 times faster inference than previous GAN-based approaches while maintaining or improving state-of-the-art detection performance on both image and tabular datasets.
25
Existing methods detect the keypoints in a non-differentiable way, therefore they can not directly optimize the position of keypoints through back-propagation. To address this issue, we present a partially differentiable keypoint detection module, which outputs accurate sub-pixel keypoints. The reprojection loss is then proposed to directly optimize these sub-pixel keypoints, and the dispersity peak loss is presented for accurate keypoints regularization. We also extract the descriptors in a sub-pixel way, and they are trained with the stable neural reprojection error loss. Moreover, a lightweight network is designed for keypoint detection and descriptor extraction, which can run at 95 frames per second for 640x480 images on a commercial GPU. On homography estimation, camera pose estimation, and visual (re-)localization tasks, the proposed method achieves equivalent performance with the state-of-the-art approaches, while greatly reduces the inference time.
333
Learning time-series representations when only unlabeled data or few labeled samples are available can be a challenging task. Recently, contrastive self-supervised learning has shown great improvement in extracting useful representations from unlabeled data via contrasting different augmented views of data. In this work, we propose a novel Time-Series representation learning framework via Temporal and Contextual Contrasting (TS-TCC) that learns representations from unlabeled data with contrastive learning. Specifically, we propose time-series-specific weak and strong augmentations and use their views to learn robust temporal relations in the proposed temporal contrasting module, besides learning discriminative representations by our proposed contextual contrasting module. Additionally, we conduct a systematic study of time-series data augmentation selection, which is a key part of contrastive learning. We also extend TS-TCC to the semi-supervised learning settings and propose a Class-Aware TS-TCC (CA-TCC) that benefits from the available few labeled data to further improve representations learned by TS-TCC. Specifically, we leverage the robust pseudo labels produced by TS-TCC to realize a class-aware contrastive loss. Extensive experiments show that the linear evaluation of the features learned by our proposed framework performs comparably with the fully supervised training. Additionally, our framework shows high efficiency in the few labeled data and transfer learning scenarios. The code is publicly available at \url{https://github.com/emadeldeen24/CA-TCC}.
134
Current large speech language models (Speech-LLMs) often exhibit limitations in empathetic reasoning, primarily due to the absence of training datasets that integrate both contextual content and paralinguistic cues. In this work, we propose two approaches to incorporate contextual paralinguistic information into model training: (1) an explicit method that provides paralinguistic metadata (e.g., emotion annotations) directly to the LLM, and (2) an implicit method that automatically generates novel training question-answer (QA) pairs using both categorical and dimensional emotion annotations alongside speech transcriptions. Our implicit method boosts performance (LLM-judged) by 38.41% on a human-annotated QA benchmark, reaching 46.02% when combined with the explicit approach, showing effectiveness in contextual paralinguistic understanding. We also validate the LLM judge by demonstrating its correlation with classification metrics, providing support for its reliability.
Autism Spectrum Disorder (ASD) affects children's social and communication abilities, with eye-tracking widely used to identify atypical gaze patterns. While unsupervised clustering can automate the creation of areas of interest for gaze feature extraction, the use of internal cluster validity indices, like Silhouette Coefficient, to distinguish gaze pattern differences between ASD and typically developing (TD) children remains underexplored. We explore whether internal cluster validity indices can distinguish ASD from TD children. Specifically, we apply seven clustering algorithms to gaze points and extract 63 internal cluster validity indices to reveal correlations with ASD diagnosis. Using these indices, we train predictive models for ASD diagnosis. Experiments on three datasets demonstrate high predictive accuracy (81\% AUC), validating the effectiveness of these indices.
3D pose transfer aims to transfer the pose-style of a source mesh to a target character while preserving both the target's geometry and the source's pose characteristic. Existing methods are largely restricted to characters with similar structures and fail to generalize to category-free settings (e.g., transferring a humanoid's pose to a quadruped). The key challenge lies in the structural and transformation diversity inherent in distinct character types, which often leads to mismatched regions and poor transfer quality. To address these issues, we first construct a million-scale pose dataset across hundreds of distinct characters. We further propose MimiCAT, a cascade-transformer model designed for category-free 3D pose transfer. Instead of relying on strict one-to-one correspondence mappings, MimiCAT leverages semantic keypoint labels to learn a novel soft correspondence that enables flexible many-to-many matching across characters. The pose transfer is then formulated as a conditional generation process, in which the source transformations are first projected onto the target through soft correspondence matching and subsequently refined using shape-conditioned representations. Extensive qualitative and quantitative experiments demonstrate that MimiCAT transfers plausible poses across different characters, significantly outperforming prior methods that are limited to narrow category transfer (e.g., humanoid-to-humanoid).
Generative speech models have demonstrated significant potential in improving human-machine interactions, offering valuable real-world applications such as language learning for children. However, achieving high-quality, child-friendly speech generation remains challenging, particularly for low-resource languages across diverse languages and cultural contexts. In this paper, we propose MultiGen, a multilingual speech generation model with child-friendly interaction, leveraging LLM architecture for speech generation tailored for low-resource languages. We propose to integrate age-appropriate multilingual speech generation using LLM architectures, which can be used to facilitate young children's communication with AI systems through culturally relevant context in three low-resource languages: Singaporean accent Mandarin, Malay, and Tamil. Experimental results from both objective metrics and subjective evaluations demonstrate the superior performance of the proposed MultiGen compared to baseline methods.
Imitation learning (IL) has shown promise in various applications (e.g. robot locomotion) but is often limited to learning a single expert policy, constraining behavior diversity and robustness in unpredictable real-world scenarios. To address this, we introduce Quality Diversity Inverse Reinforcement Learning (QD-IRL), a novel framework that integrates quality-diversity optimization with IRL methods, enabling agents to learn diverse behaviors from limited demonstrations. This work introduces Extrinsic Behavioral Curiosity (EBC), which allows agents to receive additional curiosity rewards from an external critic based on how novel the behaviors are with respect to a large behavioral archive. To validate the effectiveness of EBC in exploring diverse locomotion behaviors, we evaluate our method on multiple robot locomotion tasks. EBC improves the performance of QD-IRL instances with GAIL, VAIL, and DiffAIL across all included environments by up to 185%, 42%, and 150%, even surpassing expert performance by 20% in Humanoid. Furthermore, we demonstrate that EBC is applicable to Gradient-Arborescence-based Quality Diversity Reinforcement Learning (QD-RL) algorithms, where it substantially improves performance and provides a generic technique for learning behavioral-diverse policies. The source code of this work is provided at this https URL.
The ASVspoof 2021 challenge evaluated countermeasures for spoofed and deepfake speech detection under increasingly realistic conditions, introducing tasks for telephony channel effects, real physical replay attacks, and compressed deepfake audio. The challenge found significant progress over baselines but identified key generalization weaknesses, particularly for unseen data sources and real-world physical access scenarios.
Sourced from multiple sensors and organized chronologically, Multivariate Time-Series (MTS) data involves crucial spatial-temporal dependencies. To capture these dependencies, Graph Neural Networks (GNNs) have emerged as powerful tools. As explicit graphs are not inherent to MTS data, graph generation becomes a critical first step in adapting GNNs to this domain. However, existing approaches often rely solely on the data itself for MTS graph generation, leaving them vulnerable to biases from small training datasets. This limitation hampers their ability to construct effective graphs, undermining the accurate modeling of underlying dependencies in MTS data and reducing GNN performance in this field. To address this challenge, we propose a novel framework, K-Link, leveraging the extensive universal knowledge encoded in Large Language Models (LLMs) to reduce biases for powered MTS graph generation. To harness the knowledge within LLMs, such as physical principles, we design and extract a \textit{Knowledge-Link graph} that captures universal knowledge of sensors and their linkage. To empower MTS graph generation with the knowledge-link graph, we further introduce a graph alignment module that transfers universal knowledge from the knowledge-link graph to the graph generated from MTS data. This enhances the MTS graph quality, ensuring effective representation learning for MTS data. Extensive experiments demonstrate the efficacy of K-Link for superior performance on various MTS tasks.
Foundation models have revolutionized artificial intelligence, setting new benchmarks in performance and enabling transformative capabilities across a wide range of vision and language tasks. However, despite the prevalence of spatio-temporal data in critical domains such as transportation, public health, and environmental monitoring, spatio-temporal foundation models (STFMs) have not yet achieved comparable success. In this paper, we articulate a vision for the future of STFMs, outlining their essential characteristics and the generalization capabilities necessary for broad applicability. We critically assess the current state of research, identifying gaps relative to these ideal traits, and highlight key challenges that impede their progress. Finally, we explore potential opportunities and directions to advance research towards the aim of effective and broadly applicable STFMs.
There are no more papers matching your filters at the moment.